AMD ¢l

AMDG64 Technology

AMDG64 Architecture
Programmer’s Manual

Volume 3:
General-Purpose and
System Instructions

Publication No. Revision Date
24594 3.32 March 2021

Advanced Micro Devices “'l

© 2013 — 2021 Advanced Micro Devices Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice.
While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise
correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to
the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including
the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license, including implied
or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties
or in AMD's Standard Terms and Conditions of Sale. Any unauthorized copying, alteration, distribution,

Trademarks

AMD, the AMD Arrow logo, and combinations thereof, and 3DNow! are trademarks of Advanced
Micro Devices, Inc. Other product names used in this publication are for identification purposes only
and may be trademarks of their respective companies.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
Contents

L O01) 11 1 1P i

41 Xi

T 1) (P xiii

Revision History.covuiiiiiiiiiiiiiiiiiiiiieeeneenrenrsnssnssnssnssnsosonss xvii

g) 1 P xxiii

About This BooK. o xxiii

AUIENCE oot xxiii

OrganizZationottt ettt e et e e e e e xXiil

Conventions and Definitions it e XX1V

Related Documents. e XXXVi

1 Instruction Encoding.coiuiiiiiiiiiiiiiiiiiiiiiiieneenecnecnecnacnns 1

1.1 Instruction Encoding OVerview.ttt e 1

1.1.1 Encoding SyntaX. ottt e e e e 1

1.1.2 Representation in MEMOTY v vttt ettt ettt e e 4

1.2 Instruction Prefixes o 5

1.2.1 Summary of Legacy Prefixes 6

1.2.2 Operand-Size Override Prefix i i 7

1.2.3 Address-Size Override Prefix. 9

1.2.4 Segment-Override Prefixes. i 10

12,5 Lock Prefix . . oo 12

1.2.6 Repeat Prefixes. . ..ot 12

127 REX Prefix . ..o 14

1.2.8 VEX and XOP Prefixest e e e e 16

1.3 OPCOe. . . et 16

1.4 ModRM and SIB Bytes oot 17

141 ModRM Byte Formatt ettt 17

1.42 SIB Byte Format. 18

1.4.3 Operand Addressing in Legacy 32-bit and Compatibility Modes 20

1.4.4 Operand Addressing in 64-bit Mode. 23

1.5 Displacement Bytesottt 24

1.6 Immediate Bytesot 24

1.7 RIP-Relative Addressingvutt i e et 24

L7 L ENCOAING. . ..ot e e e 25

1.7.2 REX Prefix and RIP-Relative Addressing ittt 25

1.7.3 Address-Size Prefix and RIP-Relative Addressing. 25

1.8 Encoding Considerations Using REX 26

1.8.1 Byte-Register Addressing.v ittt e e 26

1.8.2 Special Encodings for Registers.t 26

1.9 Encoding Using the VEX and XOP Prefixes 29

1.9.1 Three-Byte Escape Sequences 29

1.9.2 Two-Byte Escape Sequence e 32

Contents i

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021

2 InStruction OVerview.ottt iintieeeeeeneeeseescessessescnscnnans 35

2.1 INStruction GIOUPS . . .« . o\ vttt et e e e e e e e e e e e 35

2.2 Reference-Page Format 36

2.3 Summary of Registers and Data Typesoviiiiii e 38

2.3.1 General-Purpose InStructionsttt 38

2.3.2 System INStruCtionS.ttt 41

2.3.3 SSEINSLIUCLIONS . . . o o vttt e e e e e e e e e 43

2.3.4 64-Bit Media Instructions.ttt 48

2.3.5 x87 Floating-Point Instructions i, 50

2.4 Summary of EXCeptions.ottt 51

2.5 NOTALION . .« ettt e e et e e e e e e e e e 53

2.5.1 MNEMONIC SYNEAX. . . ottt e ettt ettt e e e et e ettt 53

2.5.2 0PpC0AE SYNIAX . .t ottt ettt 56

2.5.3 Pseudocode Definition 57

3 General-Purpose Instruction Referencecciiiiiiiiiiiiiiiiiinnnn, 73

A A A 75

A A D L 76

AAM L 77

A A 78

ADC . . 79

AD X 81

A D . L 83

AD O X .o 85

AN DD . L 87

ANDN . 90
BEXTR

(register fOrm)ot 92
BEXTR

(immediate form). 94

BLCFILL . . .o 96

BT .. 98

BLCIC . . . 100

BLOM K . . o 102

BLCS . 104

BLSFILL . .o 106

B S, o 108

BLSIC . 110

BLSM K . . 112

B SR .o 114

BOUND . . 116

BSF 118

B R . 119

BSOS WA P . 120

BT . 121

BT C . o 123

BT R .. 125

Bl S 127

i Contents

AMDZU

24594—Rev. 3.32—March 2021

CALL(Near)covvviinnnnan..
CALL(Far),

CBW
CWDE

CDQE oo

CWD
CDQ

CMC ...

CMPSQ . oo
CMPXCHG . ..\ o oo

CMPXCHGS8B

AMDG64 Technology

Contents

iii

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021
IMP (Far) . .o e 205
LAHE . o 210
LDS
LES
LFS
LGS
LSS 211
LE A 213
LEAVE. o 215
LEENCE . . e e 216
LW P C B . .o 217
LODS
LODSB
LODSW
LODSD
LODSQ . ottt 220
LOOP
LOOPE
LOOPNE
LOOPNZ
LOOPZ . . 222
LW PIN S . L 224
LW P VAL . . 226
LZ N T . o 229
MCOMMIT . .. e e e e e e e e 231
MEENCEo 232
MONITORX . .ottt e e e e e e e e e e e e e e e 233
MOV L 235
MOV BE . . 238
MOV D . L 240
MOVMSKPD .. 244
MOVM S KPS . . 246
MOVNTL . .o e e e e e e e e e e 248
MOVS
MOVSB
MOVSW
MOVSD
MOV S . .ttt 250
MOV S X L e 252
MOV S XD .ot 253
MOV Z X . e 254
MU L. . 255
MU X . o 257
MW AL T X . et e e e e e e 259
NEG . oo 262
NP . 264
NOT 265

iv Contents

AMDZU

24594—Rev. 3.32—March 2021

POPCNT i

POPF
POPFD

PREFETCH

PREFETCHWo ...
PREFETCHlevel

PUSHF
PUSHFD

PUSHFQ ..ot
00 P

RDSEED i
RET(Near),
RET(Far)...............
ROL.o

AMDG64 Technology

Contents

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021
SCASD
SCASQ ot et 327
SETCC. . .o 329
SEENCE . .o 331
SHEL o 332
SHL D . . o 333
SHEL X . . e 335
SHRR . . e 337
SHR DD . . . e 339
SH R X . . o e, 341
SLW P C B . .., 343
ST C o e 345
ST D . . e 346
STOS
STOSB
STOSW
STOSD
ST O S Q. o et e e 347
SUB . . 349
TIM S K C . o 351
TE ST o e 353
T N T . . . e, 355
LM S K . . e 357
UDO, UDIL, UD2 . .. e e e e 359
WRFSBASE
WRGSBASE . . 360
XADDD . 361
XOCHG . o e 363
XL AT . . 365
XLAT B .. 365
XOR . . 366

4 System Instruction Reference............coiiiiiiiiiiiiiiiiiiiineneennnns 369
ARPL . 371
CLA . . . 373
CLGI . . 374
CLL. . e, 375
CLT S .o e, 377
CLR S S B Y . oo e 378
HLT 380
INC S P . .o 381
INT 3 . 383
INV D L e 386
INV L PG. . . e, 387
INV L PG A . o e 388
INVLPGB . .. 389
INVPCID . .. 392
IRET

vi Contents

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
IRETD
IRETQ . ottt e e e e 394
LA R L 402
LG DT . . ottt 404
L DT .ttt 406
155 51 5 1 P 408
LM S W 410
LS o 411
LT R ot 413
MONITOR. . .ot e e e e e e e e e e e 415
MOV CRN . .o e e e 417
MOV DRI . . oo 419
MW AT . . 421
POM A SH . .o 423
PVALIDATE . .. oot e e e e e e e e e e 426
RDM SR . .o 429
RDPKRU . . . e e 430
R PMC . . 431
RS S P . o 433
R TS C et e 434
RDTSCP ..ottt e e e e 436
RMPADIJUST ..ottt e e e e e e e e 438
RMPUPDATE . .. e e e e e 441
R M . 445
RS TOR S S . . 447
SAVEPREV SSP. . o 450
.. 450
SE T S S B Y .ottt 452
SG DT . . et 454
S DT . . .t 455
SKINTT . 456
S DT . .ttt 458
S S L 460
ST AC .t 461
STl . e e 462
ST G . .t 464
ST R o 465
SW A PGS . . 466
SY SCALL . .ottt 468
SYSENTERot e 472
SY SEXIT . ..ottt e e 474
SY SRET. . .o 476
T B S Y N C . . o 480
VR R . . o 481
VR W . o 483
VMLOAD . . .ot teee 485
VMM CALL . .o 487

Contents vii

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021
VMGEXIT . .. 487

VM RUN L 488

VM S AV E . 493

WBIN VY D . 495

WBNOINV D . . L e e 495

W RM S R . 497

WRPK RU . . 499

W RS S 500

W RU S S 503

Appendix A Opcode and Operand Encodingsciiiitiiiiirinrenrennns 505
A.l OPCOde MaPs. . o oottt 508

Legacy Opcode Maps ovti i e e e 508

BDNOW! T OPCOAES . .ot v ettt et e e e e 524

X8 ENCOdINgS . . oottt 527

rFLAGS Condition Codes for x87 Opcodest 536

Extended Instruction Opcode Maps.ttt e 536

A2 Operand Encodingst 547
ModRM Operand References 547

SIB Operand References e e 552

Appendix B General-Purpose Instructions in 64-Bit Mode 557
B.1 General Rules for 64-Bit Mode 557

B.2 Operation and Operand Size in 64-BitMode 558

B3 Invalid and Reassigned Instructions in 64-BitMode 585

B.4 Instructions with 64-Bit Default Operand Size i, 586

B.S Single-Byte INC and DEC Instructions in 64-Bit Mode. 587

B.6 NOPin64-Bit Modeo e e 588

B.7 Segment Override Prefixes in 64-BitMode 588
Appendix C Differences Between Long Mode and Legacy Mode. 589
Appendix D Instruction Subsets and CPUID Feature Flags........................ 591
D.1 Instruction Set OVeIVIEW o v ittt e e e e e e e 592

D.2 CPUID Feature Flags Related to Instruction Support.o .. 594
Appendix E Obtaining Processor Information Via the CPUID Instruction........... 597
E.1 Special Notational CONVENtIONSu' ittt ettt et e e eeens 597

E.2 Standard and Extended Function Numbers. 598

E3 Standard Feature Function Numbers. i, 598
Function 0Oh—Maximum Standard Function Number and Vendor String. 598

Function 1h—Processor and Processor Feature Identifiers. 599

Functions 2h—4h—Reserved 602

Function Sh—Monitor and MWait Features, 603

Function 6h—Power Management Related Features 603

Function 7h—Structured Extended Feature Identifiers. 604

Functions 8h—Ah—Reserved. 605

Function Bh — Extended Topology Enumeration 606

Function Ch—Reserved. 607

Function Dh—Processor Extended State Enumeration. 607

viii Contents

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
Functions 4000 _0000h—4000 FFh—Reserved for HypervisorUse................... 612

E4 Extended Feature Function Numbers 612
Function 8000 _0000h—Maximum Extended Function Number and Vendor String 612

Function 8000 0001h—Extended Processor and Processor Feature Identifiers. 613

Functions 8000_0002h—8000 0004h—Extended Processor Name String 616

Function 8000 _0005h—L1 Cache and TLB Information........................... 616

Function 8000 _0006h—L2 Cache and TLB and L3 Cache Information 618

Function 8000 _0007h—Processor Power Management and RAS Capabilities 620

Function 8000 _0008h—Processor Capacity Parameters and Extended Feature Identification .

622

Function 8000 0009h—Reserved. 624

Function 8000 000Ah—SVM Featurest 624

Functions 8000 _000Bh—8000 0018h—Reserved.coviviiinenon.. 626

Function 8000 0019h—TLB Characteristics for IGBpages........................ 626

Function 8000 001 Ah—Instruction Optimizationsccuvrernrnennn.. 627

Function 8000 001Bh—Instruction-Based Sampling Capabilities. 629

Function 8000 001Ch—Lightweight Profiling Capabilities. 629

Function 8000 001Dh—Cache Topology Information. 631

Function 8000 001Eh—Processor Topology Information 633

Function 8000 001Fh—Encrypted Memory Capabilities.covnin.... 634

Function 8000 0020—Reserved.ot e 636

Function 8000 0021—Extended Feature Identification2 636

E.5 Multiple Processor Calculation i i 636

Legacy Methodo o e e 636

Extended Method (Recommended). 637

Appendix F Instruction Effects on RFLAGScoiiiiiiiiiiiiiiiiiiiienenn. 639
T 643
Contents ix

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

)¢ Contents

AMDZU

24594—Rev. 3.32—March 2021

Figures

AMDG64 Technology

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 1-8.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.

Figure 2-10.
Figure 2-11.
Figure 2-12.
Figure 2-13.
Figure 2-14.
Figure 2-15.
Figure 2-16.

Figure 3-1.
Figure A-1.
Figure A-2.
Figure A-3.
Figure D-1.

Instruction Encoding Syntax
An Instruction as Stored in Memory
REX Prefix Format.
ModRM-Byte Format.
SIBByte Format.........................
Encoding Examples Using REX R, X, and B Bits
VEX/XOP Three-byte Escape Sequence Format
VEX Two-byte Escape Sequence Format
Format of Instruction-Detail Pages
General Registers in Legacy and Compatibility Modes
General Registers in 64-Bit Mode
Segment Registers.
General-Purpose Data Types
System Registers.
System Data Structures.
SSERegisterscoviiiia...

128-Bit SSE Data Types
SSE 256-bit Data Types

SSE 256-Bit Data Types (Continued)
64-Bit Media Registers.
64-Bit Media Data Types
x87 Registers.
x87DataTypes............coiii...
Syntax for Typical Two-Operand Instruction
MOVD Instruction Operation
ModRM-Byte Fields......................
ModRM-Byte Format.....................
SIBByte Format.........................
AMD64 ISA Instruction Subsets

Figures

Xi

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

Xii Figures

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology

Tables

Table 1-1. Legacy Instruction Prefixes i 7
Table 1-2. Operand-Size OVerridesottt e e e e e e 8
Table 1-3. Address-Size OVerrides.ttt e e 9
Table 1-4. Pointer and Count Registers and the Address-Size Prefix 10
Table 1-5. Segment-Override Prefixes. i e 11
Table 1-6. REP Prefix Opcodesottt e e et e e et 12
Table 1-7. REPE and REPZ Prefix Opcodes oo ettt et et 13
Table 1-8. REPNE and REPNZ Prefix Opcodesot e 14
Table 1-9. Instructions Not Requiring REX Prefix in 64-BitMode 15
Table 1-10. ModRM.reg and .r/m Field Encodings 18
Table 1-11. SIB.scale Field Encodings i e e 19
Table 1-12. SIB.index and .base Field Encodings 0., 20
Table 1-13. SIB.base encodings for MOARM.t/m=100b it innnnnnn... 20
Table 1-14. Operand Addressing Using ModRM and SIBBytes 21
Table 1-15. REX Prefix-Byte Fields e e 23
Table 1-16. Encoding for RIP-Relative Addressing. i, 25
Table 1-17. Special REX Encodings for Registers 27
Table 1-18. Three-byte Escape Sequence Field Definitions 30
Table 1-19. VEX.map select Encoding. ittt 30
Table 1-20. XOP.map select Encoding. e 31
Table 1-21. VEX/XOP.vvvv Encoding e 32
Table 1-22. VEX/XOP.pp Encoding e et et e e e 32
Table 1-23. VEX Two-byte Escape Sequence Field Definitions. 33
Table 1-24. Fixed Field Values for VEX 2-Byte Format. 33
Table 2-1. Interrupt-Vector Source and Cause.ot vttt ittt ettt 52
Table 2-2. +rb, +rw, +rd, and +rq Register Value 57
Table 3-1. Instruction Support Indicated by CPUID Feature Bits. 73
Table 3-2. Processor Vendor Return Values i 167
Table 3-3. Locality References for the Prefetch Instructions. 288
Table 4-1. System Instruction Support Indicated by CPUID Feature Bits. 369
Table A-1. Primary Opcode Map (One-byte Opcodes), Low Nibble 0—7h 509
Table A-2. Primary Opcode Map (One-byte Opcodes), Low Nibble 8—Fh 510
Table A-3. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 0-7h 512
Table A-4. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 8—Fh...................... 514
Tables Xiii

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

Table A-5. rFLAGS Condition Codes for CMOVcc, Jec,and SETce o .. 516
Table A-6. ModRM.reg Extensions for the Primary Opcode Map1 """""""""""""""""""" >17
Table A-7. ModRM.reg Extensions for the Secondary Opcode Map................ 519
Table A-8. Opcode 01h MOdRM EXtensionsuuutiritin et 520
Table A-9. OF 38h Opcode Map, Low Nibble = [0h:7h]
522

Table A-10. OF 38h Opcode Map, Low Nibble=[8h:Fh]............. 522
Table A-11. OF 3Ah Opcode Map, Low Nibble =[0h:7h]cco i, 523
Table A-12. OF 3Ah Opcode Map, Low Nibble =[8h:Fh] 523
Table A-13. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 0—7h.......................... 525
Table A-14. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 8—Fh.......................... 526
Table A-15. x87 Opcodes and MOdRM EXtensionsouuntitireitnr i, 528
Table A-16. rFLAGS Condition Codes for FCMOVcece i 536
Table A-17. VEX Opcode Map 1, Low Nibble =[0h:7h], 537
Table A-18. VEX Opcode Map 1, Low Nibble = [0h:7h] Continued. 538
Table A-19. VEX Opcode Map 1, Low Nibble=[8h:Fh] 539
Table A-20. VEX Opcode Map 2, Low Nibble =[0h:7h] 540
Table A-21. VEX Opcode Map 2, Low Nibble=[8h:Fh] 541
Table A-22. VEX Opcode Map 3, Low Nibble=[0h:7h], 542
Table A-23. VEX Opcode Map 3, Low Nibble=[8h:Fh] 543
Table A-24. VEX Opcode GIOUPSot vvt ettt ettt e e e e e e e e e e e e 544
Table A-25. XOP Opcode Map 8h, Low Nibble =[Oh:7h]. i 544
Table A-26. XOP Opcode Map 8h, Low Nibble=[8h:Fh] 545
Table A-27. XOP Opcode Map 9h, Low Nibble =[Oh:7h]........... i, 545
Table A-28. XOP Opcode Map 9h, Low Nibble =[8h:Fh] 546
Table A-29. XOP Opcode Map Ah, Low Nibble=[0h:7h], 546
Table A-30. XOP Opcode Map Ah, Low Nibble=[8h:Fh]........ 546
Table A-31. XOP Opcode GIOUPSottt ettt e e e e e e e e e e e e 546
Table A-32. ModRM reg Field Encoding, 16-Bit Addressingo .. 548
Table A-33. ModRM Byte Encoding, 16-Bit Addressing.ci .. 548
Table A-34. ModRM reg Field Encoding, 32-Bit and 64-Bit Addressing 550
Table A-35. ModRM Byte Encoding, 32-Bit and 64-Bit Addressing. 551
Table A-36. Addressing Modes: SIB base Field Encoding 553
Table A-37. Addressing Modes: SIB Byte Encoding. i 554
Table B-1. Operations and Operands in 64-BitMode it .. 558
Table B-2. Invalid Instructions in 64-Bit Mode 585
Table B-3. Reassigned Instructions in 64-Bit Mode., 586
xiv Tables

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
Table B-4. Invalid InstructionsinLong Mode e 586
Table B-5. Instructions Defaulting to 64-Bit Operand Size 587
Table C-1. Differences Between Long Mode and Legacy Mode 589
Table D-1. Feature Flags for Instruction / Instruction Subset Support. 594
Table E-1. CPUID Fn0000 0000 E[D,C,B]X valuesouuiiiiuiiniininanenan. 601
Table E-2. CPUID Fn8000 0000 E[D,C,B]X valuesouuiiiiuiiniineinanenan. 613
Table E-3. L1 Cache and TLB Associativity Field Encodings. 617
Table E-4. L2/L3 Cache and TLB Associativity Field Encoding. 620
Table E-5. LogicalProcessorCount, CmpLegacy, HTT,and NC 636
Table F-1. Instruction Effects on RFLAGS 637

Tables

Xv

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

XVi Tables

AMDZU

24594—Rev. 3.32—March 2021

Revision History

AMDG64 Technology

Date

Revision

Description

March 2021

3.32

Chapter 1: Updated Instruction Encoding Syntax and An
Instruction as Stored in Memory figures.

Added content to Summary of Legacy Prefixes section.

Chapter 3: Added content Instruction Support Indicated by
CPUID Feature Bits table.

Added content to LFENCE
Updated note 1 in the Legacy Instruction Prefixes table.

Chapter 4: Added content to the System Instruction Support
Indicated by CPUID Feature Bits table.

Added VMGEXIT instruction.

Added content to WRMSR instruction.

Appendix D: Added content to the Feature Flags for Instruction /
Instruction Subset Support table.

Appendix E: Updated instructions and added instructions to
sections E.3 and E.4: See bold line items.

October 2020

3.31

Chapter 2: Added to pseudocode Definition section. Table 2-1:
Added content.

Chapter 3: Added pseudocode updates.

Chapter 4: Added pseudocode updates. Added 8 new
instructions. Added INVLPGB, TLBSYNC to System Instruction
Support Indicated by CPUID Feature Bits table. Updated
INVLPGB and TLBSYNC description.

Appendix A: Instructions encoding clarifications.

Appendix D: Added new instructions to Feature Flags for
Instruction / Instruction Subset Support table.

Appendix E: Added content to CPUID Fn0000_0007_ECX x0
Structured Extended Feature Identifiers (ECX=0) table and to
Function Dh—Processor Extended State Enumeration section.
Added content to CPUID Fn8000_ 0008 EBX Extended Feature
Identifiers, CPUID Fn8000_000A_ EDX SVM Feature
Identification, and CPUID Fn8000_001F_EAX tables.

April 2020

3.30

Chapter 4: Updated INVLPG, MOV CRn, and RSM sections.

Chapter 4: Added INVLPGB, INVPCID, RDPKRU, TLBSYNC,
and WRPKRU instructions.

Appendix D: Table D-1. Updated table.
Appendix E: Updated E.3.6, E.4.7, and E.4.9 sections.

Revision History

XVii

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

Date

Revision

Description

April 2020

3.29

Table 2-1: Added content.

Chapter 4: Added PSMASH, PVALIDATE, RMPADJUST, and
RMPUPDATE instructions.

Appendix A: Table A-6, A-7, and A-8: Updated table.
Appendix D: Table D-1: Added content. Removed D.3 section.
Appendix E: Material for new features plus clarifications.
Appendix F: Table F-1: Added content.

September 2019

3.28

Added MCOMMIT instruction. Corrected CPUID function
8000_001Dh description.

July 2019

3.27

Added CLWB, RDPID, RDPRU, and WBNOINVD instructions.
Corrected functional details of BZHI instruction. Corrected SAHF
and LAHF #UD fault details. Corrected RSM reserved-bit
behavioral details.

May 2018

3.26

Modified description of CLFLUSH.

Added clarification that MOVD is referred to in some forms as
MOVQ.

Corrected the operands for VMOVNTDQA .

Updated L2/L3 Cache and Associativity tables with new
encodings over old reserved encodings

Updated CPUID with Nested Virtualization and Virtual GIF
indication bits.

December 2017

3.25

Updated Appendix E.

November 2017

3.24

Modified Mem16int in Section 2.5.1 Mnemonic Syntax
Corrected Opcode for ADCX and ADOX.

Clarified the explanation for Load Far Pointer

Modified the Description for CLAC and STAC

Added clarification to MWAITX.

Added clarifying footnote to Table A-6.

Added CPUID flags for new SVM features.

Added Bit descriptions for CPUID Fn8000_ 0008 EBX Reserved
Modified SAL1 and SAL count in Appendix F, Table F-1.

XViii

Revision History

AMDZU

24594—Rev. 3.32—March 2021

AMDG64 Technology

Date

Revision

Description

March 2017

3.23

Added CRO.PE, CR0.PE=1, EFER.LME=0 to Conventions and
Definitions in the Preface.

Modified Note 4 in Table 1-10.
Chapter 3:

Added ADCX, ADOX, CLFLUSHOPT, CLZERO, RDSEED, UDO
and UD1.

Modified CALL (Far).

Moved UD2 and MONITORX, MWAITX, from Chapter 4.
Chapter 4:

Modified RDTSC and RDTSCP.

Added CLAC and STAC.

Appendix A:

Modified Table A-7, Group 11.

Appendix D:

Modified Table D-1 and Added new Feature Flags.

June 2015

3.22

Added MONITORX and MWAITX to Chapter 4.

October 2013

3.21

Added BMI2 instructions to Chapter 3.

Added BZHI to Table F-1 on page 639.

Changed CPUID Fn8000_0001_ECX[25] to reserved.

Changed CPUID Fn8000_0007_EAX and _EDX[11] to reserved.
Added CPUID Fn0000_0006_EDX[ARAT] (bit 2).

May 2013

3.20

Updated Appendix D "Instruction Subsets and CPUID Feature
Flags" on page 591 to make instruction list comprehensive.
Added a new Appendix E "Obtaining Processor Information Via
the CPUID Instruction" on page 597 which describes all defined
processor feature bits. Supersedes and replaces the CPUID
Specification (PID # 25481).

Previous Appendix E "Instruction Effects on RFLAGS"
renumbered as Appendix F.

September
2012

3.19

Corrected the value specified for the most significant nibble of
the encoding for the VPSHAX instructions in Table A-28 on
page 546.

Revision History

Xix

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

Date

Revision

Description

March 2012

3.18

Added MOVBE instruction reference page to Chapter 3
"General-Purpose Instruction Reference" on page 71.
Added instruction reference pages for the
RDFSBASE/RDGSBASE and WRFSBASE/WRGSBASE
instructions to Chapter 3.

Added opcodes for the instructions to the opcode maps in
Appendix A.

December 2011

3.17

Corrected second byte of VEX C5 escape sequence in

Figure 1-2 on page 5.

Made multiple corrections to the description of register-indirect
addressing in Section 1.4 on page 17.

Corrected mod field value in third row of Figure 1-16 on page 25.
Updated pseudocode definition (see Section 2.5.3 on page 57).
Corrected exception tables for LZCNT and TZCNT instructions.
Added discussion of UD opcodes to introduction of Appendix A.

Provided ommitted definition of “B” used in the specification of
operand types in opcode maps of Appendix A.

Provided numerous corrections to instruction entries in opcode
maps of Appendix A.

Added ymm register mnemonic to Table A-32 on page 548 and
Table A-34 on page 550.

Changed notational convention for indicating addressing modes
in Table A-33 on page 548, Table A-35 on page 551, Table A-36
on page 553, and Table A-37 on page 554; edited footnotes.

September 2011

3.16

Reworked “Instruction Byte Order” section of Chapter 1. See
“Instruction Encoding Overview” on page 1.

Added clarification: Execution of VMRUN is disallowed while in
System Management Mode.

Made wording for BMI and TBM feature flag indication
consistent with other instructions.

Moved BMI and TBM instructions to this volume from Volume 4.
Added instruction reference page for CRC32 Instruction.

Removed one cause of #GP fault from exception table for LAR
and LSL instructions.

Added three-byte, VEX, and XOP opcode maps to Appendix A.
Revised description of RDPMC instruction.

Corrected errors in description of CLFLUSH instruction.
Corrected footnote of Table A-35 on page 551.

XX

Revision History

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

Date Revision | Description

Clarified MFENCE serializing behavior.
Added multibyte variant to “NOP” on page 237.

Corrected descriptive text to “CMPXCHG8B CMPXCHG16B” on
page 151.

November 2009 3.15

Added minor clarifications and corrected typographical and
formatting errors.

Added the following instructions: LZCNT, POPCNT, MONITOR,
and MWAIT.

Reformatted information on instruction support indicated by
CPUID feature bits into a table.

Added minor clarifications and corrected typographical and
formatting errors.

September 2007 3.14

July 2007 3.13

Added minor clarifications and corrected typographical and

September 2006 3.12 .
formatting errors.

Added SVM instructions; added PAUSE instructions; made

December 2005 3.11
factual changes.

Clarified CPUID information in exception tables on instruction
January 2005 3.10 pages. Added information under “CPUID” on page 153. Made
numerous small corrections.

Corrected table of valid descriptor types for LAR and LSL
September 2003 3.09 instructions and made several minor formatting, stylistic and
factual corrections. Clarified several technical definitions.

Corrected description of the operation of flags for RCL, RCR,
ROL, and ROR instructions. Clarified description of the
MOVSXD and IMUL instructions. Corrected operand
specification for the STOS instruction. Corrected opcode of
April 2003 3.08 SETcc, Jcc, instructions. Added thermal control and thermal
monitoring bits to CPUID instruction. Corrected exception tables
for POPF, SFENCE, SUB, XLAT, IRET, LSL, MOV(CRn),
SGDT/SIDT, SMSW, and STl instructions. Corrected many small
typos and incorporated branding terminology.

Revision History xxi

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

XXii Revision History

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

Preface

About This Book

This book is part of a multivolume work entitled the AMD64 Architecture Programmer’s Manual. This
table lists each volume and its order number.

Title Order No.
Volume 1: Application Programming 24592
Volume 2: System Programming 24593
Volume 3: General-Purpose and System Instructions 24594
Volume 4: 128-Bit and 256-Bit Media Instructions 26568
Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

Audience

This volume (Volume 3) is intended for all programmers writing application or system software for a
processor that implements the AMD64 architecture. Descriptions of general-purpose instructions
assume an understanding of the application-level programming topics described in Volume 1.
Descriptions of system instructions assume an understanding of the system-level programming topics
described in Volume 2.

Organization

Volumes 3, 4, and 5 describe the AMD64 architecture’s instruction set in detail. Together, they cover
each instruction’s mnemonic syntax, opcodes, functions, affected flags, and possible exceptions.

The AMDG64 instruction set is divided into five subsets:

e General-purpose instructions

e System instructions

e Streaming SIMD Extensions—SSE (includes 128-bit and 256-bit media instructions)

e 64-bit media instructions (MMX™)

» x87 floating-point instructions
Several instructions belong to—and are described identically in—multiple instruction subsets.

This volume describes the general-purpose and system instructions. The index at the end cross-
references topics within this volume. For other topics relating to the AMDG64 architecture, and for

Preface xXXiii

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

information on instructions in other subsets, see the tables of contents and indexes of the other
volumes.

Conventions and Definitions

The following section Notational Conventions describes notational conventions used in this volume
and in the remaining volumes of this AMDG64 Architecture Programmer’s Manual. This is followed
by a Definitions section which lists a number of terms used in the manual along with their technical
definitions. Finally, the Registers section lists the registers which are a part of the application
programming model.

Notational Conventions

#GP(0)
An instruction exception—in this example, a general-protection exception with error code of 0.
1011b
A binary value—in this example, a 4-bit value.
FOEA _0BO02h
A hexadecimal value. Underscore characters may be inserted to improve readability.
128

Numbers without an alpha suffix are decimal unless the context indicates otherwise.

7:4
A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first. Commas may be inserted
to indicate gaps.

CPUID FnXXXX XXXX RRR[FieldName]

Support for optional features or the value of an implementation-specific parameter of a processor
can be discovered by executing the CPUID instruction on that processor. To obtain this value,
software must execute the CPUID instruction with the function code XXXX XXXXh in EAX and
then examine the field FieldName returned in register RRR. If the “ RRR” notation is followed by
“ xYYY”, register ECX must be set to the value YYYh before executing CPUID. When FieldName
is not given, the entire contents of register RRR contains the desired value. When determining
optional feature support, if the bit identified by FieldName is set to a one, the feature is supported
on that processor.

CRO-CR4
A register range, from register CR0O through CR4, inclusive, with the low-order register first.

CRO[PE], CRO.PE
Notation for referring to a field within a register—in this case, the PE field of the CRO register.

xXiv Preface

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

CRO[PE]=1,CRO.PE=1
Notation indicating that the PE bit of the CRO register has a value of 1.

DS:rSI

The contents of a memory location whose segment address is in the DS register and whose offset
relative to that segment is in the rSI register.

EFER[LME] =0, EFER.LME =0
Notation indicating that the LME bit of the EFER register has a value of 0.

RFLAGS[13:12]

A field within a register identified by its bit range. In this example, corresponding to the IOPL
field.

Definitions

Many of the following definitions assume an in-depth knowledge of the legacy x86 architecture. See
“Related Documents” on page xxxiii for descriptions of the legacy x86 architecture.

128-bit media instructions

Instructions that operate on the various 128-bit vector data types. Supported within both the legacy
SSE and extended SSE instruction sets.

256-bit media instructions

Instructions that operate on the various 256-bit vector data types. Supported within the extended
SSE instruction set.

64-bit media instructions

Instructions that operate on the 64-bit vector data types. These are primarily a combination of
MMX™ and 3DNow!™ instruction sets, with some additional instructions from the SSE1 and
SSE2 instruction sets.

16-bit mode
Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode
Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

64-bit mode

A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
as register extensions, are supported for system and application software.

Preface XXV

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

absolute

Said of a displacement that references the base of a code segment rather than an instruction pointer.
Contrast with relative.

biased exponent

The sum of a floating-point value’s exponent and a constant bias for a particular floating-point data
type. The bias makes the range of the biased exponent always positive, which allows reciprocation
without overflow.

byte
Eight bits.

clear
To write a bit value of 0. Compare set.

compatibility mode
A submode of long mode. In compatibility mode, the default address size is 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit

To irreversibly write, in program order, an instruction’s result to software-visible storage, such as a
register (including flags), the data cache, an internal write buffer, or memory.

CPL
Current privilege level.

direct

Referencing a memory location whose address is included in the instruction’s syntax as an
immediate operand. The address may be an absolute or relative address. Compare indirect.

dirty data
Data held in the processor’s caches or internal buffers that is more recent than the copy held in
main memory.

displacement

A signed value that is added to the base of a segment (absolute addressing) or an instruction pointer
(relative addressing). Same as offset.

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

XXVi Preface

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

effective address size

The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size

The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

element

See vector.

exception

An abnormal condition that occurs as the result of executing an instruction. The processor’s
response to an exception depends on the type of the exception. For all exceptions except 128-bit
media SIMD floating-point exceptions and x87 floating-point exceptions, control is transferred to
the handler (or service routine) for that exception, as defined by the exception’s vector. For
floating-point exceptions defined by the IEEE 754 standard, there are both masked and unmasked
responses. When unmasked, the exception handler is called, and when masked, a default response
is provided instead of calling the handler.

flush

An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in “flush the cache
line,” or (2) invalidate, as in “flush the pipeline,” or (3) change a value, as in “flush to zero.”

GDT
Global descriptor table.

IDT

Interrupt descriptor table.

IGN

Ignored. Value written is ignored by hardware. Value returned on a read is indeterminate. See
reserved.

indirect

Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. Compare direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

Preface XXVii

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

IVT
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy x86

The legacy x86 architecture. See “Related Documents” on page xxxiii for descriptions of the
legacy x86 architecture.

legacy mode

An operating mode of the AMD64 architecture in which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

LIP
Linear Instruction Pointer. LIP = (CS.base + rIP).

long mode

An operating mode unique to the AMDG64 architecture. A processor implementation of the
AMD64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

Isb
Least-significant bit.

LSB
Least-significant byte.

main memory

Physical memory, such as RAM and ROM (but not cache memory) that is installed in a particular
computer system.

mask
(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for a control purpose.

MBZ
Must be zero. If software attempts to set an MBZ bit to 1, a general-protection exception (#GP)
occurs.

memory
Unless otherwise specified, main memory.

XXViii Preface

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

ModRM

A byte following an instruction opcode that specifies address calculation based on mode (Mod),
register (R), and memory (M) variables.

moffset
A 16, 32, or 64-bit offset that specifies a memory operand directly, without using a ModRM or SIB
byte.

msb
Most-significant bit.

MSB
Most-significant byte.

multimedia instructions
A combination of 128-bit media instructions and 64-bit media instructions.

octword
Same as double quadword.

offset
Same as displacement.

overflow
The condition in which a floating-point number is larger in magnitude than the largest, finite,

positive or negative number that can be represented in the data-type format being used.

packed
See vector.

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe

A check for an address in a processor’s caches or internal buffers. External probes originate
outside the processor, and internal probes originate within the processor.

procedure stack
A portion of a stack segment in memory that is used to link procedures. Also known as a program

Preface XXix

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

stack.

program stack
See procedure stack.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ

Read as zero. Value returned on a read is always zero (0) regardless of what was previously
written. See reserved.

real-address mode
See real mode.

real mode
A short name for real-address mode, a submode of legacy mode.

relative

Referencing with a displacement (also called offset) from an instruction pointer rather than the
base of a code segment. Contrast with absolute.

reserved
Fields marked as reserved may be used at some future time.

To preserve compatibility with future processors, reserved fields require special handling when
read or written by software. Software must not depend on the state of a reserved field (unless
qualified as RAZ), nor upon the ability of such fields to return a previously written state.

If a field is marked reserved without qualification, software must not change the state of that field;
it must reload that field with the same value returned from a prior read.

Reserved fields may be qualified as IGN, MBZ, RAZ, or SBZ (see definitions).

REX

An instruction prefix that specifies a 64-bit operand size and provides access to additional
registers.

RIP-relative addressing
Addressing relative to the 64-bit RIP instruction pointer.

SBZ
Should be zero. An attempt by software to set an SBZ bit to 1 results in undefined behavior.

XXX Preface

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

shadow stack

A shadow stack is a separate, protected stack that is conceptually parallel to the procedure stack
and used only by the shadow stack feature.

set

To write a bit value of 1. Compare clear.

SIB

A byte following an instruction opcode that specifies address calculation based on scale (S), index
(I), and base (B).

SIMD
Single instruction, multiple data. See vector.

SSE

Streaming SIMD extensions instruction set. See /28-bit media instructions and 64-bit media
instructions.

SSE2

Extensions to the SSE instruction set. See 128-bit media instructions and 64-bit media
instructions.

SSE3
Further extensions to the SSE instruction set. See 128-bit media instructions.

sticky bit
A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

TOP
The x87 top-of-stack pointer.

TPR
Task-priority register (CR8).

TSS
Task-state segment.

underflow

The condition in which a floating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector
(1) A set of integer or floating-point values, called elements, that are packed into a single operand.
Most of the 128-bit and 64-bit media instructions use vectors as operands. Vectors are also called
packed or SIMD (single-instruction multiple-data) operands.

Preface XXxXi

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

(2) An index into an interrupt descriptor table (IDT), used to access exception handlers. Compare
exception.

virtual-8086 mode
A submode of legacy mode.

word
Two bytes, or 16 bits.

x86
See legacy x86.

Registers

In the following list of registers, the names are used to refer either to a given register or to the contents
of that register:

AH-DH

The high 8-bit AH, BH, CH, and DH registers. Compare AL-DL.
AL-DL

The low 8-bit AL, BL, CL, and DL registers. Compare AH-DH.

AL-r15B

The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and R§8B—R15B registers, available in 64-bit
mode.

BP

Base pointer register.

CRn

Control register number 7.

CS
Code segment register.

eAX—eSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers. Compare r4X—SP.

EFER

Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. Compare rFLAGS.

XXXii Preface

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

EFLAGS
32-bit (extended) flags register.

elP
16-bit or 32-bit instruction-pointer register. Compare »/P.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs

General-purpose registers. For the 16-bit data size, these are AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
data size, these include RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R&R15.

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r&rl5

The 8-bit REB—R15B registers, or the 16-bit RSW—-R15W registers, or the 32-bit RSD-R15D
registers, or the 64-bit R§—R 15 registers.

rAX—SP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder » with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-
bit size.

RAX
64-bit version of the EAX register.

Preface xxxiii

AMDZU

AMDG64 Technology

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

rFLAGS

16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS

64-bit flags register. Compare rFLAGS.

rIP

24594—Rev. 3.32—March 2021

16-bit, 32-bit, or 64-bit instruction-pointer register. Compare RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

SS
Stack segment register.

SSP
Shadow-stack pointer register.

TPR

Task priority register, a new register introduced in the AMD64 architecture to speed interrupt

management.

XXXiv

Preface

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

TR
Task register.

Endian Order

The x86 and AMD64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with their least-significant byte at the lowest byte address, and they are illustrated
with their least significant byte at the right side. Strings are illustrated in reverse order, because the
addresses of their bytes increase from right to left.

Preface XXXV

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021

Related Documents

Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,
1995.

Rakesh Agarwal, 80x86 Architecture & Programming: Volume II, Prentice-Hall, Englewood
Cliffs, NJ, 1991.

AMD, Software Optimization Guide for AMD Family 15h Processors, order number 47414.

AMD, BIOS and Kernel Developer's Guide (BKDG) for particular hardware implementations of
older families of the AMD64 architecture.

AMD, Processor Programming Reference (PPR) for particular hardware implementations of
newer families of the AMD64 architecture.

Don Anderson and Tom Shanley, Pentium Processor System Architecture, Addison-Wesley, New
York, 1995.

Nabajyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,
1992.

Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,
Macmillan Publishing Co., New York, 1994.

Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.

Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest
McGraw-Hill, 1993.

Geoff Chappell, DOS Internals, Addison-Wesley, New York, 1994.

Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and
Technologies, Inc., San Jose, 1992.

John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.

Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,
1995.

Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.

Cyrix Corporation, MX Processor MMX Extension Opcode Table, Cyrix Corporation, Richardson,
TX, 1996.

Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.

Ray Duncan, Extending DOS: A Programmer's Guide to Protected-Mode DOS, Addison Wesley,
NY, 1991.

William B. Giles, Assembly Language Programming for the Intel 8Oxxx Family, Macmillan, New
York, 1991.

Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.

XxXxvi Preface

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology

John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,
San Mateo, CA, 1996.

Thom Hogan, The Programmer’s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.

Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro, Peer-to-Peer Communications, Menlo
Park, CA, 1997.

IBM Corporation, 486SLC Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex
Junction, VT, 1995.

IBM Corporation, 8§0486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,
VT, 1995.

IBM Corporation, Blue Lightning 486DX2 Data Book, IBM Corporation, Essex Junction, VT,
1994.

Institute of Electrical and Electronics Engineers, IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Std 754-1985.

Institute of Electrical and Electronics Engineers, /EEE Standard for Radix-Independent Floating-
Point Arithmetic, ANSI/IEEE Std 854-1987.

Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 IBM PC and Compatible Computers,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.

Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel
Pentium, Oxford University Press, New York, 1999.

Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &
Sons, New York, 1987.

NexGen Inc., Nx586 Processor Data Book, NexGen Inc., Milpitas, CA, 1993.
NexGen Inc., Nx686 Processor Data Book, NexGen Inc., Milpitas, CA, 1994.

Bipin Patwardhan, Introduction to the Streaming SIMD Extensions in the Pentium IlI,
www.x86.org/articles/sse _ptl/simdl.htm, June, 2000.

Peter Norton, Peter Aitken, and Richard Wilton, PC Programmer’s Bible, Microsoft Press,
Redmond, WA, 1993.

PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.
PharLap TNT DOS-Extender Reference Manual, Pharlap, Cambridge MA, 1995.

Sen-Cuo Ro and Sheau-Chuen Her, i386/i486 Advanced Programming, Van Nostrand Reinhold,
New York, 1993.

Jeftrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite
class, 1992.

Preface XXXVii

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

e Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.

e SGS-Thomson Corporation, 8§0486DX Processor SMM Programming Manual, SGS-Thomson
Corporation, 1995.

e Walter A. Triebel, The 80386 DX Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.
e John Wharton, The Complete x86, MicroDesign Resources, Sebastopol, California, 1994.

XXXViii Preface

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

1 Instruction Encoding

AMD64 technology instructions are encoded as byte strings of variable length. The order and meaning
of each byte of an instruction’s encoding is specified by the architecture. Fields within the encoding
specify the instruction’s basic operation, the location of the one or more source operands, and the
destination of the result of the operation. Data to be used in the execution of the instruction or the
computation of addresses for memory-based operands may also be included. This section describes the
general format and parameters used by all instructions.

For information on the specific encoding(s) for each instruction, see:
e Chapter 3, “General-Purpose Instruction Reference.”

e Chapter 4, “System Instruction Reference.”

e “SSE Instruction Reference” in Volume 4.

e “64-Bit Media Instruction Reference” in Volume 5.

* “x87 Floating-Point Instruction Reference” in Volume 5.

For information on determining the instruction form and operands specified by a given binary
encoding, see Appendix A.

1.1 Instruction Encoding Overview

An instruction is encoded as a string between one and 15 bytes in length. The entire sequence of bytes
that represents an instruction, including the basic operation, the location of source and destination
operands, any operation modifiers, and any immediate and/or displacement values, is called the
instruction encoding. The following sections discuss instruction encoding syntax and representation in
memory.

1.1.1 Encoding Syntax

Figure 1-1 provides a schematic representation of the encoding syntax of an instruction.

Instruction Encoding 1

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021
< 3 additional
Start |egacy REX Primary End
prefix) prefix’ > opcode 5®
map
/ OFh Now! 3DNow!
escape SDNow al opcode |
map
OFh Second. l’ l 1,2,4,8 1,2,4,8
- escape »| opcode [-§—» ModRM SIB [byte byte 4
map Disp immed
VEX or XOP note 4
A4 38h OF_38h
escape » opcode
map
3Ah OF_3Ah
> escape » opcode [P
map
C5 2-byte sequence NOTES:
VEX RV VEX 1. REX prefix is not allowed in extended
— prefix —| L.pp A opcode ¥ instruction encodings that employ the
map=01h LMap 1 VEX or XOP prefixes
C4 3-byte sequence map=02h 2. map = VEX/XOP.map_select field
VEX RXB W.vvw VEX 3. The total number of bytes in an
| prefix | "|map_sei| | .Lpp ["[OPC0de> instruction encoding must be less than
| map 2 or equal to 15
map=03h 4. Instructions that encode an 8-byte
VEX immediate field do not use a displace-
opcode ¥ ment field and vice versa.
map 3
XOP
Vamnda opcode |
map=08h map 8
map=09h
W.vvwv XOP
— XOfF’ e mF\;XE"sl e L.pp —»| opcode (>
prefix p_ L. map 9
map|=0Ah
XOP
opcode
map A

Figure 1-1. Instruction Encoding Syntax

Each square in this diagram represents an instruction byte of a particular type and function. To
understand the diagram, follow the connecting paths in the direction indicated by the arrows from
“Start” to “End.” The squares passed through as the graph is traversed indicate the order and number of

2 Instruction Encoding

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

bytes used to encode the instruction. Note that the path shown above the legacy prefix byte loops back
indicating that up to four additional prefix bytes may be used in the encoding of a single instruction.
Branches indicate points in the syntax where alternate semantics are employed based on the instruction
being encoded. The “VEX or XOP” gate across the path leading down to the VEX prefix and XOP
prefix blocks means that only extended instructions employing the VEX or XOP prefixes use this
particular branch of the syntax diagram. This diagram will be further explained in the sections that
follow.

1.1.1.1 Legacy Prefixes

As shown in the figure, an instruction optionally begins with up to five legacy prefixes. These prefixes
are described in “Summary of Legacy Prefixes” on page 6. The legacy prefixes modify an instruction’s
default address size, operand size, or segment, or they invoke a special function such as modification
of the opcode, atomic bus-locking, or repetition.

In the encoding of most SSE instructions, a legacy operand-size or repeat prefix is repurposed to
modify the opcode. For the extended encodings utilizing the XOP or VEX prefixes, these prefixes are
not allowed.

1.1.1.2 REX Prefix

Following the optional legacy prefix or prefixes, the REX prefix can be used in 64-bit mode to access
the AMD64 register number and size extensions. Refer to the diagram in “Application-Programming
Register Set” in Volume 1 for an illustration of these facilities. If a REX prefix is used, it must
immediately precede the opcode byte or the first byte of a legacy escape sequence. The REX prefix is
not allowed in extended instruction encodings using the VEX or XOP encoding escape prefixes.
Violating this restriction results in an #UD exception.

1.1.1.3 Opcode

The opcode is a single byte that specifies the basic operation of an instruction. Every instruction
requires an opcode. The correspondence between the binary value of an opcode and the operation it
represents is presented in a table called an opcode map. Because it is indexed by an 8-bit value, an
opcode map has 256 entries. Since there are more than 256 instructions defined by the architecture,
multiple different opcode maps must be defined and the selection of these alternate opcode maps must
be encoded in the instruction. Escape sequences provide this access to alternate opcode maps.

If there are no opcode escapes, the primary (“one-byte”) opcode map is used. In the figure this is the
path pointing from the REX Prefix block to the Primary opcode map block.

Section , “Primary Opcode Map” of Appendix A provides details concerning this opcode map.

1.1.1.4 Escape Sequences

Escape sequences allow access to alternate opcode maps that are distinct from the primary opcode
map. Escape sequences may be one, two, or three bytes in length and begin with a unique byte value
designated for this purpose in the primary opcode map. Escape sequences are of two distinct types:

Instruction Encoding 3

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

legacy escape sequences and extended escape sequences. The legacy escape sequences will be covered
here. For more details on the extended escape sequences, see “VEX and XOP Prefixes” on page 16.

Legacy Escape Sequences

The legacy syntax allows one 1-byte escape sequence (OFh), and three 2-byte escape sequences (0Fh,
OFh; OFh, 38h; and OFh, 3Ah). The 1-byte legacy escape sequence OFh selects the secondary (“two-
byte’’) opcode map. In legacy terminology, the sequence [OFh, opcode] is called a two-byte opcode.
See Section , “Secondary Opcode Map” of Appendix A for details concerning this opcode map.

The 2-byte escape sequence OF, OFh selects the 3DNow! opcode map which is indexed using an
immediate byte rather than an opcode byte. In this case, the byte following the escape sequence is the
ModRM byte instead of the opcode byte. In Figure 1-1 this is indicated by the path labeled “3DNow!”
leaving the second OFh escape block. Details concerning the 3DNow! opcode map are presented in
Section A.1.2, “3DNow!™ Opcodes” of Appendix A.

The 2-byte escape sequences [0Fh, 38h] and [OFh, 3Ah] respectively select the OF 38h opcode map
and the OF 3Ah opcode map. These are used primarily to encode SSE instructions and are described in
Section , “OF 38h and OF 3Ah Opcode Maps” of Appendix A.

1.1.1.5 ModRM and SIB Bytes

The opcode can be followed by a mode-register-memory (ModRM) byte, which further describes the
operation and/or operands. The ModRM byte may also be followed by a scale-index-base (SIB) byte,
which is used to specify indexed register-indirect forms of memory addressing. The ModRM and SIB
bytes are described in “ModRM and SIB Bytes” on page 17. Their legacy functions can be augmented
by the REX prefix (see “REX Prefix” on page 14) or the VEX and XOP escape sequences (See “VEX
and XOP Prefixes” on page 16).

1.1.1.6 Displacement and Immediate Fields

The instruction encoding may end with a 1-, 2-, or 4-byte displacement field and/or a 1-, 2-, or 4-byte
immediate field depending on the instruction and/or the addressing mode. Specific instructions also
allow either an 8-byte immediate field or an 8-byte displacement field.

1.1.2 Representation in Memory

Instructions are stored in memory in little-endian order. The first byte of an instruction is stored at the
lowest memory address, as shown in Figure 1-2 below. Since instructions are strings of bytes, they
may start at any memory address. The total instruction length must be less than or equal to 15. If this
limit is exceeded, a general-protection exception results.

4 Instruction Encoding

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
Legacy encoding including Extended encoding
optional REX Prefix using VEX/XOP?
Kgg?::; Immediate) Immediate)
Immediate Immediate
A’ > A’ >*1,2,4, or8
— Immediate | Immediate |
Immediate Immediate
- = - = seenote4
Displacement Displacement
Displacement Displacement
: >t : rt1,2,4, 0or 8
" Displacement | " Displacement |
Displacement Displacement
SIB+ SIB+t t+optional, based addressing mode
<15 Bytes . . .
ModRM* ModRM* optional, based on instruction
Opcode Opcode
Escape* W.vvvv.L.pp R.vvvv.L.pp for VEX C5
Escape* RXB.map_select | not present for VEX C5
REX? VEX/XOP
Legacy Prefix Legacy Prefix3
Legacy Prefi ix3
Sy et § (g Legacy Pref!x s
] Legacy Prefix t Legacy Prefix® 1 optional, with most instructions
i Ad(c)ivrv;?sssf Legacy Prefix Legacy Prefix3
7 0 7 0

Notes:

" Available only in 64-Bit Mode

2 Available only in Long or Protected Mode

3 FO0, F2, F3, and 66 prefixes not allowed

* Instructions that specify an 8-byte immediate field do
not include a displacement field and vice versa.

Figure 1-2. An Instruction as Stored in Memory

1.2 Instruction Prefixes

Instruction prefixes are of two types: instruction modifier prefixes and encoding escape prefixes.
Instruction modifier prefixes can change the operation of the instruction (including causing its
execution to repeat), change its operand types, specify an alternate operand size, augment register
specification, or even change the interpretation of the opcode byte.

The instruction modifier prefixes comprise the legacy prefixes and the REX prefix. The legacy
prefixes are discussed in the next section. The REX prefix is discussed in “REX Prefix” on page 14.

Encoding escape prefixes, on the other hand, signal that the two or three bytes that follow obey a
different encoding syntax. As a group, the encoding escape prefix and its subsequent bytes constitute a
multi-byte escape sequence. These multi-byte escape sequences perform functions similar to that of

Instruction Encoding 5

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

the instruction modifier prefixes, but they also provide a means to directly specify alternate opcode
maps.

The currently defined encoding escape prefixes are the VEX and XOP prefixes. They are discussed
further in the section entitled “VEX and XOP Prefixes” on page 16.

1.2.1 Summary of Legacy Prefixes

Table 1-1 on page 7 shows the legacy prefixes. The legacy prefixes are organized into five groups, as
shown in the left-most column of Table 1-1. An instruction encoding may include a maximum of one
prefix from each of the five groups. The legacy prefixes can appear in any order within the position
shown in Figure 1-1 for legacy prefixes. The result of using multiple prefixes from a single group is
undefined.

Some of the restrictions on legacy prefixes are:

* Operand-Size Override—This prefix only affects the operand size for general-purpose instructions
or for other instructions whose source or destination is a general-pupose register. When used in the
encoding of SIMD and some other instructions, this prefix is repurposed to modify the opcode.

* Address-Size Override—This prefix only affects the address size of memory operands.

* Segment Override—In 64-bit mode, the CS, DS, ES, and SS segment override prefixes are
ignored.

* LOCK Prefix—This prefix is allowed only with certain instructions that modify memory.
* Repeat Prefixes—These prefixes affect only certain string instructions. When used in the encoding
of SIMD and some other instructions, these prefixes are repurposed to modify the opcode.

Note that Lock and Repeat prefixes are in effect mutually exclusive when used as instruction
modifiers, in that there are no instructions for which both are meaningful.

6 Instruction Encoding

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

Table 1-1. Legacy Instruction Prefixes

. Prefix .
i 1 Mnemonic Description
Prefix Group Byte (Hex) p
Operand-Size none 662 Changes the default operand size of a memory or
Override register operand, as shown in Table 1-2 on page 8.
Address-Size Override | none 673 Changes the default address size of a memory operand,
as shown in Table 1-3 on page 9.
cS op4 Forces use of the current CS segment for memory
operands.
DS 34 Forces use of the current DS segment for memory
operands.
ES 064 Forces use of the current ES segment for memory
. operands.
Segment Override
Forces use of the current FS segment for memory
FS 64
operands.
Forces use of the current GS segment for memory
GS 65
operands.
ss 364 Forces use of the current SS segment for memory
operands.
Lock LOCK F05 _Causes_ certain kinds of memory read-modify-write
instructions to occur atomically.
REP Repeats a string operation (INS, MOVS, OUTS, LODS,
and STOS) until the rCX register equals 0.
REPE or F36 Repeats a compare-string or scan-string operation
Repeat REPZ (CMPSx and SCASXx) until the rCX register equals 0 or
P the zero flag (ZF) is cleared to 0.
REPNE or Repeats a compare-string or scan-string operation
F2b (CMPSx and SCASXx) until the rCX register equals 0 or
REPNZ :
the zero flag (ZF) is set to 1.
Notes:

1. A single instruction should include no more than one prefix from each of the Override prefix groups plus either a
Lock or Repeat prefix, when used as instruction modifiers.

2. When used in the encoding of SIMD and some other instructions, this prefix is repurposed to extend the opcode.
The prefix is ignored by 64-bit media floating-point (3DNow!™) instructions. See “Instructions that Cannot Use the
Operand-Size Prefix” on page 8.

3. This prefix also changes the size of the RCX register when used as an implied count register.

4. In 64-bit mode, the CS, DS, ES, and SS segment overrides are ignored.

5. The LOCK prefix should not be used for instructions other than those listed in “Lock Prefix” on page 11.

6. This prefix should be used only with compare-string and scan-string instructions. When used in the encoding of
SIMD and some other instructions, the prefix is repurposed to extend the opcode.

1.2.2 Operand-Size Override Prefix

The default operand size for an instruction is determined by a combination of its opcode, the D
(default) bit in the current code-segment descriptor, and the current operating mode, as shown in
Table 1-2. The operand-size override prefix (66h) selects the non-default operand size. The prefix can

Instruction Encoding 7

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

be used with any general-purpose instruction that accesses non-fixed-size operands in memory or
general-purpose registers (GPRs), and it can also be used with the x87 FLDENV, FNSTENY,
FNSAVE, and FRSTOR instructions.

In 64-bit mode, the prefix allows mixing of 16-bit, 32-bit, and 64-bit data on an instruction-by-
instruction basis. In compatibility and legacy modes, the prefix allows mixing of 16-bit and 32-bit
operands on an instruction-by-instruction basis.

Table 1-2. Operand-Size Overrides

Default (E)ff‘::;ir“’g Instruction Prefix’
Operating Mode Operand pSize s6h 3
i i REX.W
Size (Bits) (Bits)
64 don’t care yes
64-Bit 2
Mode 32 32 no no
16 yes no
Long
Mode 32 32 no
Compatibility 16 yes
Mode 16 32 yes
16 no Not Appli-
32 no cable
Legacy Mode 32 16 yes
(Protected, Virtual-8086,
or Real Mode) 16 32 yes
16 no
Notes:
1. A “no’indicates that the default operand size is used.
2. This is the typical default, although some instructions default to other operand
sizes. See Appendix B, “General-Purpose Instructions in 64-Bit Mode,” for details.
3. See “REX Prefix” on page 14.

In 64-bit mode, most instructions default to a 32-bit operand size. For these instructions, a REX prefix
(page 14) can specify a 64-bit operand size, and a 66h prefix specifies a 16-bit operand size. The REX
prefix takes precedence over the 66h prefix. However, if an instruction defaults to a 64-bit operand
size, it does not need a REX prefix and it can only be overridden to a 16-bit operand size. It cannot be
overridden to a 32-bit operand size, because there is no 32-bit operand-size override prefix in 64-bit
mode. Two groups of instructions have a default 64-bit operand size in 64-bit mode:

e Near branches. For details, see “Near Branches in 64-Bit Mode” in Volume 1.

* All instructions, except far branches, that implicitly reference the RSP. For details, see “Stack
Operation” in Volume 1.

Instructions that Cannot Use the Operand-Size Prefix. The operand-size prefix should be used
only with general-purpose instructions and the x87 FLDENYV, FNSTENV, FNSAVE, and FRSTOR

8 Instruction Encoding

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

instructions, in which the prefix selects between 16-bit and 32-bit operand size. The prefix is ignored
by all other x87 instructions and by 64-bit media floating-point (3DNow!™) instructions.

For other instructions (mostly SIMD instructions) the 66h, F2h, and F3h prefixes are used as opcode
extensions to extend the instruction encoding space in the OFh, OF 38h, and OF 3Ah opcode maps.

Operand-Size and REX Prefixes. The W bit field of the REX prefix takes precedence over the 66h
prefix. See “REX.W: Operand width (Bit 3)” on page 23 for details.

1.2.3 Address-Size Override Prefix

The default address size for instructions that access non-stack memory is determined by the current
operating mode, as shown in Table 1-3. The address-size override prefix (67h) selects the non-default
address size. Depending on the operating mode, this prefix allows mixing of 16-bit and 32-bit, or of
32-bit and 64-bit addresses, on an instruction-by-instruction basis. The prefix changes the address size
for memory operands. It also changes the size of the RCX register for instructions that use RCX
implicitly.

For instructions that implicitly access the stack segment (SS), the address size for stack accesses is
determined by the D (default) bit in the stack-segment descriptor. In 64-bit mode, the D bit is ignored,
and all stack references have a 64-bit address size. However, if an instruction accesses both stack and
non-stack memory, the address size of the non-stack access is determined as shown in Table 1-3.

Table 1-3. Address-Size Overrides

Add -
Default Effective Size :2;)(
Operating Mode Address | Address Size (67h)1
Size (Bits Bits
() () Required?
64-Bit 64 no
64
Mode 32 yes
32 no
Long Mode 32
Compatibility 16 yes
Mode 32 yes
16
16 no
32 32 no
Legacy Mode_ 16 yes
(Protected, Virtual-8086, or Real
Mode) 32 yes
16
16 no
Notes:
1. A “no” indicates that the default address size is used.

As Table 1-3 shows, the default address size is 64 bits in 64-bit mode. The size can be overridden to 32
bits, but 16-bit addresses are not supported in 64-bit mode. In compatibility and legacy modes, the
default address size is 16 bits or 32 bits, depending on the operating mode (see “Processor

Instruction Encoding 9

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

Initialization and Long Mode Activation” in Volume 2 for details). In these modes, the address-size
prefix selects the non-default size, but the 64-bit address size is not available.

Certain instructions reference pointer registers or count registers implicitly, rather than explicitly. In
such instructions, the address-size prefix affects the size of such addressing and count registers, just as
it does when such registers are explicitly referenced. Table 1-4 lists all such instructions and the
registers referenced using the three possible address sizes.

Table 1-4. Pointer and Count Registers and the Address-Size Prefix

Pointer or Count Register
Instruction 16-Bit 32-Bit 64-Bit
Address Size | Address Size | Address Size

CMPS, CMPSB, CMPSW,
CMPSD, CMPSQ—Compare SlI, DI, CX ESI, EDI, ECX | RSI, RDI, RCX
Strings
INS, INS.B’ INSW, INSD— DI, CX EDI, ECX RDI, RCX
Input String
JCXZ, JECXZ, JRCXZ—
Jump on CX/ECX/RCX Zero CX ECX RCX
LODS, LODSB, LODSW,
LODSD, LODSQ—Load SI, CX ESI, ECX RSI, RCX
String
LOOP, LOOPE, LOOPNZ,
LOOPNE, LOOPZ—Loop CX ECX RCX
MOVS, MOVSB, MOVSW,
MOVSD, MOVSQ—Move S|, DI, CX ESI, EDI, ECX | RSI, RDI, RCX
String
OUTS, OUTSB, OUTSW,
OUTSD—Output String SI, CX ESI, ECX RSI, RCX
REP, REPE, REPNE, REPNZ,
REPZ—Repeat Prefixes CX ECX RCX
SCAS, SCASB, SCASW,
SCASD, SCASQ—Scan DI, CX EDI, ECX RDI, RCX
String
STOS, STOSB, STOSW,
STOSD, STOSQ—Store DI, CX EDI, ECX RDI, RCX
String
XLAT, X'LATB—TabIe Look-up BX EBX RBX
Translation

1.2.4 Segment-Override Prefixes

Segment overrides can be used only with instructions that reference non-stack memory. Most
instructions that reference memory are encoded with a ModRM byte (page 17). The default segment

10 Instruction Encoding

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

for such memory-referencing instructions is implied by the base register indicated in its ModRM byte,
as follows:

* [Instructions that Reference a Non-Stack Segment—If an instruction encoding references any base
register other than rBP or rSP, or if an instruction contains an immediate offset, the default segment
is the data segment (DS). These instructions can use the segment-override prefix to select one of
the non-default segments, as shown in Table 1-5.

e String Instructions—String instructions reference two memory operands. By default, they
reference both the DS and ES segments (DS:rSI and ES:rDI). These instructions can override their
DS-segment reference, as shown in Table 1-5, but they cannot override their ES-segment
reference.

* [Instructions that Reference the Stack Segment—If an instruction’s encoding references the rBP or
rSP base register, the default segment is the stack segment (SS). All instructions that reference the
stack (push, pop, call, interrupt, return from interrupt) use SS by default. These instructions cannot
use the segment-override prefix.

Table 1-5. Segment-Override Prefixes

Mnemonic Pre(flll);)?)yte Description
cs’ 2E Forces use of current CS segment for memory operands.
DS’ 3E Forces use of current DS segment for memory operands.
ES’ 26 Forces use of current ES segment for memory operands.
FS 64 Forces use of current FS segment for memory operands.
GS 65 Forces use of current GS segment for memory operands.
ss! 36 Forces use of current SS segment for memory operands.
Notes:
1. In 64-bit mode, the CS, DS, ES, and SS segment overrides are ignored.

Segment Overrides in 64-Bit Mode. In 64-bit mode, the CS, DS, ES, and SS segment-override
prefixes have no effect. These four prefixes are not treated as segment-override prefixes for the
purposes of multiple-prefix rules. Instead, they are treated as null prefixes.

The FS and GS segment-override prefixes are treated as true segment-override prefixes in 64-bit
mode. Use of the FS or GS prefix causes their respective segment bases to be added to the effective
address calculation. See “FS and GS Registers in 64-Bit Mode” in Volume 2 for details.

1.2.5 Lock Prefix

The LOCK prefix causes certain kinds of memory read-modify-write instructions to occur atomically.
The mechanism for doing so is implementation-dependent (for example, the mechanism may involve
bus signaling or packet messaging between the processor and a memory controller). The prefix is
intended to give the processor exclusive use of shared memory in a multiprocessor system.

Instruction Encoding 11

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

The LOCK prefix can only be used with forms of the following instructions that write a memory
operand: ADC, ADD, AND, BTC, BTR, BTS, CMPXCHG, CMPXCHG8B, CMPXCHG16B, DEC,
INC, NEG, NOT, OR, SBB, SUB, XADD, XCHG, and XOR. An invalid-opcode exception occurs if
the LOCK prefix is used with any other instruction.

1.2.6 Repeat Prefixes

The repeat prefixes cause repetition of certain instructions that load, store, move, input, or output
strings. The prefixes should only be used with such string instructions. Two pairs of repeat prefixes,
REPE/REPZ and REPNE/REPNZ, perform the same repeat functions for certain compare-string and
scan-string instructions. The repeat function uses rCX as a count register. The size of rCX is based on
address size, as shown in Table 1-4 on page 10.

REP. The REP prefix repeats its associated string instruction the number of times specified in the
counter register (rCX). It terminates the repetition when the value in rCX reaches 0. The prefix can be
used with the INS, LODS, MOVS, OUTS, and STOS instructions. Table 1-6 shows the valid REP

prefix opcodes.

Table 1-6. REP Prefix Opcodes

Mnemonic Opcode

REP INS reg/mem8, DX
REP INSB

REP INS reg/mem16/32, DX
REP INSW F3 6D
REP INSD

REP LODS mem8

REP LODSB

REP LODS mem16/32/64

REP LODSW

REP LODSD

REP LODSQ

REP MOVS mem8, mem8

REP MOVSB

REP MOVS mem16/32/64, mem16/32/64
REP MOVSW

REP MOVSD

REP MOVSQ

REP OUTS DX, reg/mem8

REP OUTSB

F36C

F3AC

F3AD

F3 A4

F3 A5

F3 6E

12 Instruction Encoding

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

Table 1-6. REP Prefix Opcodes (continued)

Mnemonic Opcode
REP OUTS DX, reg/mem16/32
REP OUTSW F3 6F
REP OUTSD

REP STOS mem8

REP STOSB

REP STOS mem16/32/64
REP STOSW

REP STOSD

REP STOSQ

F3 AA

F3 AB

REPE and REPZ. REPE and REPZ are synonyms and have identical opcodes. These prefixes repeat
their associated string instruction the number of times specified in the counter register (rCX). The
repetition terminates when the value in rCX reaches 0 or when the zero flag (ZF) is cleared to 0. The
REPE and REPZ prefixes can be used with the CMPS, CMPSB, CMPSD, CMPSW, SCAS, SCASB,
SCASD, and SCASW instructions. Table 1-7 shows the valid REPE and REPZ prefix opcodes.

Table 1-7. REPE and REPZ Prefix Opcodes

Mnemonic Opcode

REPx CMPS mem8, mem8
REPx CMPSB

REPx CMPS mem16/32/64, mem16/32/64
REPx CMPSW

REPx CMPSD

REPx CMPSQ

REPx SCAS mem8

REPx SCASB

REPx SCAS mem16/32/64
REPx SCASW

REPx SCASD

REPx SCASQ

F3 A6

F3 A7

F3 AE

F3 AF

REPNE and REPNZ. REPNE and REPNZ are synonyms and have identical opcodes. These prefixes
repeat their associated string instruction the number of times specified in the counter register (rCX).
The repetition terminates when the value in rCX reaches 0 or when the zero flag (ZF) is set to 1. The
REPNE and REPNZ prefixes can be used with the CMPS, CMPSB, CMPSD, CMPSW, SCAS,
SCASB, SCASD, and SCASW instructions. Table 1-8 on page 14 shows the valid REPNE and
REPNZ prefix opcodes.

Instruction Encoding 13

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

Table 1-8. REPNE and REPNZ Prefix Opcodes

Mnemonic Opcode

REPNx CMPS mem8, mem8
REPNx CMPSB

REPNx CMPS mem16/32/64, mem16/32/64
REPNx CMPSW

REPNx CMPSD

REPNx CMPSQ

REPNx SCAS mem8

REPNx SCASB

REPNx SCAS mem16/32/64

REPNx SCASW

REPNx SCASD

REPNx SCASQ

F2 A6

F2 A7

F2 AE

F2 AF

Instructions that Cannot Use Repeat Prefixes. In general, the repeat prefixes should only be used
in the string instructions listed in tables 1-6, 1-7, and 1-8 above. For other instructions (mostly SIMD
instructions) the 66h, F2h, and F3h prefixes are used as instruction modifiers to extend the instruction
encoding space in the OFh, OF 38h, and OF 3Ah opcode maps.

Optimization of Repeats. Depending on the hardware implementation, the repeat prefixes can have
a setup overhead. If the repeated count is variable, the overhead can sometimes be avoided by
substituting a simple loop to move or store the data. Repeated string instructions can be expanded into
equivalent sequences of inline loads and stores or a sequence of stores can be used to emulate a REP
STOS.

For repeated string moves, performance can be maximized by moving the largest possible operand
size. For example, use REP MOVSD rather than REP MOVSW and REP MOVSW rather than REP
MOVSB. Use REP STOSD rather than REP STOSW and REP STOSW rather than REP MOVSB.

Depending on the hardware implementation, string moves with the direction flag (DF) cleared to 0
(up) may be faster than string moves with DF set to 1 (down). DF =1 is only needed for certain cases
of overlapping REP MOVS, such as when the source and the destination overlap.

1.2.7 REX Prefix

The REX prefix, available in 64-bit mode, enables use of the AMD64 register and operand size
extensions. Unlike the legacy instruction modification prefixes, REX is not a single unique value, but
occupies a range (40h to 4Fh). Figure 1-1 on page 2 shows how the REX prefix fits within the
encoding syntax of instructions.

The REX prefix enables the following features in 64-bit mode:

e Use of the extended GPR (Figure 2-3 on page 39) and YMM/XMM registers (Figure 2-8 on
page 44).

14 Instruction Encoding

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

* Use of the 64-bit operand size when accessing GPRs.

e Use of the extended control and debug registers, as described in Section 2.4 “Registers” in
Volume 2.

* Use of the uniform byte registers (AL-R15).

REX contains five fields. The upper nibble is unique to the REX prefix and identifies it is as such. The
lower nibble is divided into four 1-bit fields (W, R, X, and B). See below for a discussion of these
fields.Figure 1-3 below shows the format of the REX prefix. Since each bit of the lower nibble can be
a 1 or a 0, REX spans one full row of the primary opcode map occupying entries 40h through 4Fh.

7 6 5 4 3 2 1 0
I 4 IW/RIX|B|
v3_REX_byte_format.eps

Figure 1-3. REX Prefix Format

A REX prefix is normally required with an instruction that accesses a 64-bit GPR or one of the
extended GPR or YMM/XMM registers. A few instructions have an operand size that defaults to (or is
fixed at) 64 bits in 64-bit mode, and thus do not need a REX prefix. These instructions are listed in
Table 1-9 below.

Table 1-9. Instructions Not Requiring REX Prefix in 64-Bit Mode

CALL (Near) POP reg/mem

ENTER POP reg

Jee POP FS

JrCXzZ POP GS

JMP (Near) POPF, POPFD, POPFQ
LEAVE PUSH imm8

LGDT PUSH imm32

LIDT PUSH reg/mem

LLDT PUSH reg

LOOP PUSH FS

LOOPcc PUSH GS

LTR PUSHF, PUSHFD, PUSHFQ
MOV CRn RET (Near)

MOV DRn

An instruction may have only one REX prefix which must immediately precede the opcode or first
escape byte in the instruction encoding. The use of a REX prefix in an instruction that does not access
an extended register is ignored. The instruction-size limit of 15 bytes applies to instructions that
contain a REX prefix.

Instruction Encoding 15

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

Implications for INC and DEC Instructions

The REX prefix values are taken from the 16 single-byte INC and DEC instructions, one for each of
the eight legacy GPRs. Therefore, these single-byte opcodes for INC and DEC are not available in 64-
bit mode, although they are available in legacy and compatibility modes. The functionality of these
INC and DEC instructions is still available in 64-bit mode, however, using the ModRM forms of those
instructions (opcodes FF /0 and FF /1).

1.2.8 VEX and XOP Prefixes

The extended instruction encoding syntax, available in protected and long modes, provides one 2-byte
and three 3-byte escape sequences introduced by either the VEX or XOP prefixes. These multi-byte
sequences not only select opcode maps, they also provide instruction modifiers similar to, but in lieu
of, the REX prefix.

The 2-byte escape sequence initiated by the VEX C5h prefix implies a map_select encoding of 1. The
three-byte escape sequences, initiated by the VEX C4h prefix or the XOP (8Fh) prefix, select the target
opcode map explicitly via the VEX/XOP.map_select field. The five-bit VEX.map_select field allows
the selection of one of 31 different opcode maps (opcode map 00h is reserved). The XOP.map_select
field is restricted to the range 08h — 1Fh and thus can only select one of 24 different opcode maps.

The VEX and XOP escape sequences contain fields that extend register addressing to a total of 16,
increase the operand specification capability to four operands, and modify the instruction operation.

The extended SSE instruction subsets AVX, AES, CLMU, FMA, FMA4, and XOP and a few non-SSE
instructions utilize the extended encoding syntax. See “Encoding Using the VEX and XOP Prefixes”
on page 29 for details on the encoding of the two- and three-byte extended escape sequences.

1.3 Opcode

The opcode is a single byte that specifies the basic operation of an instruction. In some cases, it also
specifies the operands for the instruction. Every instruction requires an opcode. The correspondence
between the binary value of the opcode and the operation it represents is defined by a table called an
opcode map. As discussed in the previous sections, the legacy prefixes 66h, F2h, and F3h and other
fields within the instruction encoding may be used to modify the operation encoded by the opcode.

The affect of the presence of a 66h, F2h, or F3h prefix on the operation performed by the opcode is
represented in the opcode map by additional rows in the table indexed by the applicable prefix. The 3-
bit reg and r/m fields of the ModRM byte (“ModRM and SIB Bytes” on page 17) are used as well in
the encoding of certain instructions. This is represented in the opcode maps via instruction group
tables that detail the modifications represented via the extra encoding bits. See Section A.1, “Opcode
Maps” of Appendix A for examples.

Even though each instruction has a unique opcode map and opcode, assemblers often support multiple
alternate mnemonics for the same instruction to improve the readability of assembly language code.

16 Instruction Encoding

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

The 64-bit floating-point 3DNow! instructions utilize the two-byte escape sequence OFh, OFh to select
the 3DNow! opcode map. For these instructions the opcode is encoded in the immediate field at the
end of the instruction encoding.

For details on how the opcode byte encodes the basic operation for specifc instructions, see Section
A.1, “Opcode Maps” of Appendix A

1.4 ModRM and SIB Bytes

The ModRM byte is optional depending on the instruction. When present, it follows the opcode and is
used to specify:

* two register-based operands, or

* one register-based operand and a second memory-based operand and an addressing mode.

In the encoding of some instructions, fields within the ModRM byte are repurposed to provide
additional opcode bits used to define the instruction’s function.

The ModRM byte is partitioned into three fields—mod, reg, and /m. Normally the reg field specifies a
register-based operand and the mod and r/m fields used together specify a second operand that is either
register-based or memory-based. The addressing mode is also specified when the operand is memory-
based.

In 64-bit mode, the REX.R and REX.B bits augment the reg and r/m fields respectively allowing the
specification of twice the number of registers.

141 ModRM Byte Format
Figure 1-4 below shows the format of a ModRM byte.

7 6 5 4 3 2 1 0
[mod | reg | r/m | ModRM

REX.R, VEX.R or XOP.R —T
extend this field to 4 bits

REX.B, VEX.B, or XOP.B
extend this field to 4 bits

Figure 1-4. ModRM-Byte Format

Depending on the addressing mode, the SIB byte may appear after the ModRM byte. SIB is used in the
specification of various forms of indexed register-indirect addressing. See the following section for
details.

Instruction Encoding 17

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

ModRM.mod (Bits[7:6]). The mod field is used with the r/m field to specify the addressing mode for
an operand. ModRM.mod = 11b specifies the register-direct addressing mode. In the register-direct
mode, the operand is held in the specified register. ModRM.mod values less than 11b specify register-
indirect addressing modes. In register-indirect addressing modes, values held in registers along with an
optional displacement specified in the instruction encoding are used to calculate the address of a
memory-based operand. Other encodings of the 5 bits {mod, r/m} are discussed below.

ModRM.reg (Bits[5:3]). The reg field is used to specify a register-based operand, although for some
instructions, this field is used to extend the operation encoding. The encodings for this field are shown
in Table 1-10 below.

ModRM.r/m (Bits[2:0]). As stated above, the r/m field is used in combination with the mod field to
encode 32 different operand specifications (See Table 1-14 on page 21). The encodings for this field
are shown in Table 1-10 below.

Table 1-10. ModRM.reg and .r/m Field Encodings

E"C(%?f:r‘;?'”e ModRM.reg’ ModRM.r/m (mod = 11b)" (m:):i'v:':g'z

000 rAX, MMX0, XMMO, YMMO rAX, MMX0, XMMO, YMMO [rAX]
001 rCX, MMX1, XMM1, YMM1 rCX, MMX1, XMM1, YMM1 [rCX]
010 rDX, MMX2, XMM2, YMM2 rDX, MMX2, XMM2, YMM2 [rDX]
011 rBX, MMX3, XMM3, YMM3 rBX, MMX3, XMM3, YMM3 [rBX]
100 AH, rSP, MMX4, XMM4, YMM4 | AH, rSP, MMX4, XMM4, YMM4 SIB3
101 CH, rBP, MMX5, XMM5, YMM5 | CH, rBP, MMX5, XMM5, YMM5 [rBP]4
110 DH, rSI, MMX6, XMM6, YMM6 | DH, rSI, MMX6, XMM6, YMM6 [rS]]

111 BH, rDI, MMX7, XMM7, YMM7 | BH, rDI, MMX7, XMM7, YMM7 [rDI]

Notes:

1. Specific register used is instruction-dependent.

2. mod = 01 and mod = 10 include an offset specified by the instruction displacement field.
The notation [*] signifies that the specified register holds the address of the operand.

3. Indexed register-indirect addressing. SIB byte follows ModRM byte. See following section for SIB encoding.

4. For mod = 00b , r/m = 101b signifies absolute (displacement-only) addressing in 32-bit mode or RIP-relative
addressing in 64-bit mode, where the rBP register is not used. For mod = [01b, 10b], r/m = 101b specifies
the base + offset addressing mode with [rBP] as the base.

Similar to the reg field, r/m is used in some instructions to extend the operation encoding.

1.4.2 SIB Byte Format

The SIB byte has three fields—scale, index, and base—that define the scale factor, index-register
number, and base-register number for the 32-bit and 64-bit indexed register-indirect addressing
modes.

18 Instruction Encoding

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

The basic formula for computing the effective address of a memory-based operand using the indexed
register-indirect address modes is:

effective_address = scale * index + base + offset
Specific variants of this addressing mode set one or more elements of the sum to zero.
Figure 1-5 below shows the format of the SIB byte.

Bt 7 6 5 4 3 2 1 0
[scale | index | base | s

REX.X bit of REX prefix can —T
extend this field to 4 bits

REX.B bit of REX prefix can
extend this field to 4 bits

Figure 1-5. SIB Byte Format

SIB.scale (Bits[7:6]). The scale field is used to specify the scale factor used in computing the
scale*index portion of the effective address. In normal usage scale represents the size of data elements
in an array expressed in number of bytes. SIB.scale is encoded as shown in Table 1-11 below.

Table 1-11. SIB.scale Field Encodings

Encoded value scale
(binary) factor

00 1

01 2

10 4

11 8

SIB.index (Bits[5:3]). The index field is used to specify the register containing the index portion of
the indexed register-indirect effective address. SIB.index is encoded as shown in Table 1-12 below.

SIB.base (Bits[2:0]). The base field is used to specify the register containing the base address
portion of the indexed register-indirect effective address. SIB.base is encoded as shown in Table 1-12
below.

Instruction Encoding 19

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

Table 1-12. SiB.index and .base Field Encodings

Encoded value .
. SIB.index SIB.base
(binary)
000 [rAX] [rAX]
001 [rCX] [FCX]
010 [rDX] [(DX]
oM [rBX] [rBX]
100 (none)’ [rSP]
101 [rBP] [rBP], (none)?
110 [rSI1] DH, [rSI]
111 [rDlI] BH, [rDI]
Notes:
1. Register specification is null. The scale*index portion of the indexed register-indirect effec-
tive address is set to 0.
2. If ModRM.mod = 00b, the register specification is null. The base portion of the indexed reg-
ister-indirect effective address is set to 0. Otherwise, base encodes the rBP register as
the source of the base address used in the effective address calculation.

Table 1-13. SiIB.base encodings for ModRM.r/m = 100b

SIB base Field
mod 000 001 010 011 100 101 110 111
00 disp32
01 [FAX] | [rCX] | [rDX] | [rBX] | [rSP] | [rBP]+disp8 | [rSl] [rDI]
10 [rBP]+disp32
11 (not applicable)

More discussion of operand addressing follows in the next two sections.

1.4.3 Operand Addressing in Legacy 32-bit and Compatibility Modes

The mod and r/m fields of the ModRM byte provide a total of five bits used to encode 32 operand
specification and memory addressing modes. Table 1-14 below shows these encodings.

20

Instruction Encoding

AMDZU

24594—Rev. 3.32—March 2021

AMDG64 Technology

Table 1-14. Operand Addressing Using ModRM and SIB Bytes

ModRM.mod | ModRM.r/m Register / Effective Address
000 [rAX]
001 [rCX]
010 [rDX]
011 [rBX]
00
100 si’
101 disp32
110 [rSI]
111 [rDI]
000 [FAX]+disp8
001 [rCX]+disp8
010 [rDX]+disp8
011 [rBX]+disp8
01
100 SIB+disp8?
101 [rBP]+disp8
110 [rSI]+disp8
111 [rDl]+disp8
000 [rAX]+disp32
001 [rCX]+disp32
010 [rDX]+disp32
011 [rBX]+disp32
10
100 SIB+disp32°
101 [rBP]+disp32
110 [rSI]+disp32
111 [rDI]+disp32
Notes:

0. In the following notes, scaled_index = SIB.index * (1 << SIB.scale).

1. SIB byte follows ModRM byte. Effective address is calculated using
scaled_index+base. When SIB.base = 101b, addressing mode depends on
ModRM.mod. See Table 1-13 above.

2. SIB byte follows ModRM byte. Effective address is calculated using scaled_in-
dex+base+8-bit_offset. One-byte Displacement field provides the offset.

3. SIB byte follows ModRM byte. Effective address is calculated using scaled_in-
dex+base+32-bit_offset. Four-byte Displacement field provides the offset.

Instruction Encoding

21

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

Table 1-14. Operand Addressing Using ModRM and SIB Bytes (continued)

ModRM.mod | ModRM.r/m Register / Effective Address

000 AL/rAX/MMX0/XMMO0/YMMO
001 CL/rCXIMMX1/XMM1/YMM1
010 DL/rDX/MMX2/XMM2/YMM2

» 011 BL/rBX/MMX3/XMM3/YMM3
100 AH/SPL/rSP/MMX4/XMM4/Y MM4
101 CH/BPL/rBP/MMX5/XMM5/YMM5
110 DH/SIL/rSI/MMX6/XMM6/YMM6
111 BH/DIL/rDI/MMX7/XMM7/Y MM7

Notes:

0. In the following notes, scaled_index = SIB.index * (1 << SIB.scale).

1. SIB byte follows ModRM byte. Effective address is calculated using
scaled_index+base. When SIB.base = 101b, addressing mode depends on
ModRM.mod. See Table 1-13 above.

2. SIB byte follows ModRM byte. Effective address is calculated using scaled_in-
dex+base+8-bit_offset. One-byte Displacement field provides the offset.

3. SIB byte follows ModRM byte. Effective address is calculated using scaled_in-
dex+base+32-bit_offset. Four-byte Displacement field provides the offset.

Note that the addressing mode mod = 11b is a register-direct mode, that is, the operand is contained in
the specified register, while the modes mod = [00b:10b] specify different addressing modes for a
memory-based operand.

For mod = 11b, the register containing the operand is specified by the r/m field. For the other modes
(mod = [00b:10b]), the mod and r/m fields are combined to specify the addressing mode for the
memory-based operand. Most are register-indirect addressing modes meaning that the address of the
memory-based operand is contained in the register specified by r/m. For these register-indirect modes,
mod = 01b and mod = 10b include an offset encoded in the displacement field of the instruction.

The encodings {mod # 11b, r/m = 100b} specify the indexed register-indirect addressing mode in
which the target address is computed using a combination of values stored in registers and a scale
factor encoded directly in the SIB byte. For these addressing modes the effective address is given by
the formula:

effective_address = scale * index + base + offset

Scale is encoded in SIB.scale field. Index is contained in the register specified by SIB.index field and
base is contained in the register specified by SIB.base field. Offset is encoded in the displacement field
of the instruction using either one or four bytes.

If {mod, r/m} = 00100Db, the offset portion of the formula is set to 0. For {mod, r/m} = 01100b and
{mod, r/m} =10100b, offset is encoded in the one- or 4-byte displacement field of the instruction.

Finally, the encoding {mod, r/m} = 00101b specifies an absolute addressing mode. In this mode, the
address is provided directly in the instruction encoding using a 4-byte displacement field. In 64-bit
mode this addressing mode is changed to RIP-relative (see “RIP-Relative Addressing” on page 24).

22 Instruction Encoding

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

1.4.4 Operand Addressing in 64-bit Mode

AMDG64 architecture doubles the number of GPRs and increases their width to 64-bits. It also doubles
the number of YMM/XMM registers. In order to support the specification of register operands
contained in the eight additional GPRs or YMM/XMM registers and to make the additional GPRs
available to hold addresses to be used in the addressing modes, the REX prefix provides the R, X, and
B bit fields to extend the reg, r/m, index, and base fields of the ModRM and SIB bytes in the various
operand addressing modes to four bits. A fourth REX bit field (W) allows instruction encodings to
specify a 64-bit operand size.

Table 1-15 below and the sections that follow describe each of these bit fields.

Table 1-15. REX Prefix-Byte Fields

Mnemonic Bit Position(s) Definition
— 7:4 0100 (4h)
0 = Default operand size

REX-W 3 1 = 64-bit operand size

REX R 5 1I-b|t1(msb) (la>$ten3|on of the ModRM reg
field', permitting access to 16 registers.

REX.X 1 1-bit (msb) extension of the SIB index field",

permitting access to 16 registers.
1-bit (msb) extension of the ModRM r/m

REX.B 0 field!, SIB base field', or opcode reg field,
permitting access to 16 registers.

Notes:

1. For a description of the ModRM and SIB bytes, see “ModRM and SIB Bytes” on
page 17.

REX.W: Operand width (Bit 3). Setting the REX.W bit to 1 specifies a 64-bit operand size. Like the
existing 66h operand-size override prefix, the REX 64-bit operand-size override has no effect on byte
operations. For non-byte operations, the REX operand-size override takes precedence over the 66h
prefix. If a 66h prefix is used together with a REX prefix that has the W bit set to 1, the 66h prefix is
ignored. However, if a 66h prefix is used together with a REX prefix that has the W bit cleared to 0,
the 66h prefix is not ignored and the operand size becomes 16 bits.

REX.R: Register field extension (Bit 2). The REX.R bit adds a 1-bit extension (in the most
significant bit position) to the ModRM.reg field when that field encodes a GPR, YMM/XMM, control,
or debug register. REX.R does not modify ModRM.reg when that field specifies other registers or is
used to extend the opcode. REX.R is ignored in such cases.

REX.X: Index field extension (Bit 1). The REX.X bit adds a 1-bit (msb) extension to the SIB.index
field. See “ModRM and SIB Bytes” on page 17.

Instruction Encoding 23

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

REX.B: Base field extension (Bit 0). The REX.B bit adds a 1-bit (msb) extension to either the
ModRM.r/m field to specify a GPR or XMM register, or to the SIB.base field to specify a GPR. (See
Table 2-2 on page 56 for more about the B bit.)

1.5 Displacement Bytes

A displacement (also called an offset) is a signed value that is added to the base of a code segment
(absolute addressing) or to an instruction pointer (relative addressing), depending on the addressing
mode. The size of a displacement is 1, 2, or 4 bytes. If an addressing mode requires a displacement, the
bytes (1, 2, or 4) for the displacement follow the opcode, ModRM, or SIB byte (whichever comes last)
in the instruction encoding.

In 64-bit mode, the same ModRM and SIB encodings are used to specify displacement sizes as those
used in legacy and compatibility modes. However, the displacement is sign-extended to 64 bits during
effective-address calculations. Also, in 64-bit mode, support is provided for some 64-bit displacement
and immediate forms of the MOV instruction. See “Immediate Operand Size” in Volume 1 for more
information on this.

1.6 Immediate Bytes

An immediate is a value—typically an operand value—encoded directly into the instruction.
Depending on the opcode and the operating mode, the size of an immediate operand can be 1, 2, 4, or 8
bytes. 64-bit immediates are allowed in 64-bit mode on MOV instructions that load GPRs, otherwise
they are limited to 4 bytes. See “Immediate Operand Size” in Volume 1 for more information.

If an instruction takes an immediate operand, the bytes (1, 2, 4, or 8) for the immediate follow the
opcode, ModRM, SIB, or displacement bytes (whichever come last) in the instruction encoding. Some
128-bit media instructions use the immediate byte as a condition code.

1.7 RIP-Relative Addressing

In 64-bit mode, addressing relative to the contents of the 64-bit instruction pointer (program
counter)—called RIP-relative addressing or PC-relative addressing—is implemented for certain
instructions. In such cases, the effective address is formed by adding the displacement to the 64-bit
RIP of the next instruction.

In the legacy x86 architecture, addressing relative to the instruction pointer is available only in control-
transfer instructions. In the 64-bit mode, any instruction that uses ModRM addressing can use RIP-
relative addressing. This feature is particularly useful for addressing data in position-independent code
and for code that addresses global data.

Without RIP-relative addressing, ModRM instructions address memory relative to zero. With RIP-
relative addressing, ModRM instructions can address memory relative to the 64-bit RIP using a signed
32-bit displacement. This provides an offset range of £2 Gbytes from the RIP.

24 Instruction Encoding

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

Programs usually have many references to data, especially global data, that are not register-based. To
load such a program, the loader typically selects a location for the program in memory and then adjusts
program references to global data based on the load location. RIP-relative addressing of data makes
this adjustment unnecessary.

1.7.1 Encoding

Table 1-16 shows the ModRM and SIB encodings for RIP-relative addressing. Redundant forms of
32-bit displacement-only addressing exist in the current ModRM and SIB encodings. There is one
ModRM encoding with several SIB encodings. RIP-relative addressing is encoded using one of the
redundant forms. In 64-bit mode, the ModRM disp32 (32-bit displacement) encoding ({mod,r/m} =
00101Db) is redefined to be RIP + disp32 rather than displacement-only.

Table 1-16. Encoding for RIP-Relative Addressing

ModRM siB Legacy and 64-bit Mode Additional 64-bit
Compatibility Modes Implications
Zero-based (normal)
* mod =00 . . displacement addressing
+
. t/m =101 not present disp32 RIP + disp32 must use SIB form (see
next row).
. - 2
. mod = 00 base = 101 .
1 |+ index =100% disp32 Same as Legacy None
* r/m=100
* scale = xx
Notes:
1. Encodes the indexed register-indirect addressing mode with 32-bit offset.
2. Base register specification is null (base portion of effective address calculation is set to 0)
3. index register specification is null (scale*index portion of effective address calculation is set to 0)

1.7.2 REX Prefix and RIP-Relative Addressing

ModRM encoding for RIP-relative addressing does not depend on a REX prefix. In particular, the »/m
encoding of 101, used to select RIP-relative addressing, is not affected by the REX prefix. For
example, selecting R13 (REX.B = I, r/m = 101) with mod = 00 still results in RIP-relative addressing.

The four-bit r/m field of ModRM is not fully decoded. Therefore, in order to address R13 with no
displacement, software must encode it as R13 + 0 using a one-byte displacement of zero.

1.7.3 Address-Size Prefix and RIP-Relative Addressing

RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. Conversely, use of the
address-size prefix (“Address-Size Override Prefix” on page 9) does not disable RIP-relative
addressing. The effect of the address-size prefix is to truncate and zero-extend the computed effective
address to 32 bits, like any other addressing mode.

Instruction Encoding 25

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

1.8 Encoding Considerations Using REX

Figure 1-6 on page 28 shows four examples of how the R, X, and B bits of the REX prefix are
concatenated with fields from the ModRM byte, SIB byte, and opcode to specify register and memory
addressing.

1.8.1 Byte-Register Addressing

In the legacy architecture, the byte registers (AH, AL, BH, BL, CH, CL, DH, and DL, shown in
Figure 2-2 on page 38) are encoded in the ModRM reg or r/m field or in the opcode reg field as
registers 0 through 7. The REX prefix provides an additional byte-register addressing capability that
makes the least-significant byte of any GPR available for byte operations (Figure 2-3 on page 39).
This provides a uniform set of byte, word, doubleword, and quadword registers better suited for
register allocation by compilers.

1.8.2 Special Encodings for Registers

Readers who need to know the details of instruction encodings should be aware that certain
combinations of the ModRM and SIB fields have special meaning for register encodings. For some of
these combinations, the instruction fields expanded by the REX prefix are not decoded (treated as
don’t cares), thereby creating aliases of these encodings in the extended registers. Table 1-17 on
page 27 describes how each of these cases behaves.

26 Instruction Encoding

AMDZU

24594—Rev. 3.32—March 2021

AMDG64 Technology

Table 1-17. Special REX Encodings for Registers

ModRM and SIB

Meaning in Legacy and

Implications in Legacy
and Compatibility

Additional REX

« r/m' =100 (ESP)

Encodingsz Compatibility Modes Modes Implications
REX prefix adds a fourth
ModRM Byt bit (b), which is decoded
0 yte: . . and modifies the base
* mod # 11 SIB byte is present. SIB byte s required for register in the SIB byte.

ESP-based addressing.

Therefore, the SIB byte is
also required for R12-
based addressing.

ModRM Byte:
* mod =00
« r/m' =x101 (EBP)

Base register is not used.

Using EBP without a
displacement must be
done by setting mod = 01
with a displacement of 0
(with or without an index
register).

REX prefix adds a fourth
bit (x), which is not
decoded (don'’t care).
Therefore, using RBP or
R13 without a
displacement must be
done via mod = 01 with a
displacement of 0.

SIB Byte:
« index' = x100 (ESP)

Index register is not used.

ESP cannot be used as
an index register.

REX prefix adds a fourth
bit (x), which is decoded.
Therefore, there are no
additional implications.
The expanded index field
is used to distinguish RSP
from R12, allowing R12 to
be used as an index.

SIB Byte:
* base =b101 (EBP)
¢« ModRM.mod = 00

Base register is not used
if ModRM.mod = 00.

Base register depends on
mod encoding. Using
EBP with a scaled index
and without a
displacement must be
done by setting mod = 01
with a displacement of 0.

REX prefix adds a fourth
bit (b), which is not
decoded (don’t care).
Therefore, using RBP or
R13 without a
displacement must be
done via mod = 01 with a
displacement of 0 (with or
without an index register).

Notes:

1. The REX-prefix bit is shown in the fourth (most-significant) bit position of the encodings for the ModRM r/m, SIB
index, and SIB base fields. The lower-case “x” for ModRM r/m (rather than the upper-case “B” shown in Figure 1-6
on page 28) indicates that the REX-prefix bit is not decoded (don’t care).

2. For a description of the ModRM and SIB bytes, see “ModRM and SIB Bytes” on page 17.

Instruction Encoding

27

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

Examples of Operand Addressing Extension Using REX

Case 1: Register-Register Addressing (No Memory Operand)

ModRM Byte
REX Prefix Opcode mod reg r/m
4WRXB | | | [11] rr [bbb] REXXis not used
4
4
Rrrr Bbbb

Case 2: Memory Addressing Without an SIB Byte

ModRM Byte
REX Prefix Opcode mod reg r/m
4WRXB | | | [111] rr Joob | REX.X is not used
| ModRM reg field 1= 100
4
4
Rrrr - Bbbb

Case 3: Memory Addressing With an SIB Byte
ModRM Byte SIB Byte

REX Prefix Opcode mod reg r/m scaleindex base
4WRXB | | | [111] rr [100] [bb | xxx | bbb |
4 T4

4
Rrrr Xxxx Bbbb

Case 4: Register Operand Coded in Opcode Byte

REX Prefix op reg
4WRXB | | | bbb | REX.Ris not used
| REX.X is not used
4
Bbbb

Figure 1-6. Encoding Examples Using REX R, X, and B Bits

28 Instruction Encoding

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

1.9 Encoding Using the VEX and XOP Prefixes

An extended escape sequence is introduced by an encoding escape prefix which establishes the context
and the format of the bytes that follow. The currently defined prefixes fall in two classes: the XOP and
the VEX prefixes (of which there are two). The XOP prefix and the VEX C4h prefix introduce a three
byte sequence with identical syntax, while the VEX C5h prefix introduces a two-byte escape sequence
with a different syntax.

These escape sequences supply fields used to extend operand specification as well as provide for the
selection of alternate opcode maps. Encodings support up to two additional operands and the
addressing of the extended (beyond 7) registers. The specification of two of the operands is
accomplished using the legacy ModRM and optional SIB bytes with the reg, r/m, index, and base
fields extended by one bit in a manner analogous to the REX prefix.

The encoding of the extended SSE instructions utilize extended escape sequences. XOP instructions
use three-byte escape sequences introduced by the XOP prefix. The AVX, FMA, FMA4, and CLMUL
instruction subsets use three-byte or two-byte escape sequences introduced by the VEX prefixes.

1.9.1 Three-Byte Escape Sequences

All the extended instructions can be encoded using a three-byte escape sequence, but certain VEX-
encoded instructions that comply with the constraints described below in Section 1.9.2, “Two-Byte
Escape Sequence” can also utilize a two-byte escape sequence. Figure 1-7 below shows the format of
the three-byte escape sequence which is common to the XOP and VEX-based encodings.

Byte 0 Byte 1 Byte 2
7 0o|l7 6 5 4 0|7 6 3 2 1 0
Encoding escape prefix R ‘ X ‘ B ‘ map_select W VWV ‘ L | pp ‘

Figure 1-7. VEX/XOP Three-byte Escape Sequence Format

Byte Bit Mnemonic Description
0 [7:0] VEX, XOP Value specific to the extended instruction set
1 [7] R Inverted one-bit extension of ModRM reg field
[6] X Inverted one-bit extension of SIB index field
[5] B Inverted one-bit extension, r/m field or SIB base
field
[4:0] map_select Opcode map select

Instruction Encoding 29

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021
Byte Bit Mnemonic Description
2 [7] w Default operand size override for a general

purpose register to 64-bit size in 64-bit mode;
operand configuration specifier for certain
YMM/XMM-based operations.

[6:3] VWV Source or destination register selector, in ones’
complement format

[2] L Vector length specifier
[1:0] pp Implied 66, F2, or F3 opcode extension

Table 1-18. Three-byte Escape Sequence Field Definitions
Byte 0 (VEX/XOP Prefix)

Byte 0 is the encoding escape prefix byte which introduces the encoding escape sequence and
establishes the context for the bytes that follow. The VEX and XOP prefixes have the following
encodings:

* VEX prefix is encoded as C4h
e XOP prefix is encoded as 8Fh

Byte 1

VEX/XOP.R (Bit 7). The bit-inverted equivalent of the REX.R bit. A one-bit extension of the
ModRM.reg field in 64-bit mode, permitting access to 16 YMM/XMM and GPR registers. In 32-bit
protected and compatibility modes, the value must be 1.

VEX/XOP.X (Bit 6). The bit-inverted equivalent of the REX.X bit. A one-bit extension of the
SIB.index field in 64-bit mode, permitting access to 16 YMM/XMM and GPR registers. In 32-bit
protected and compatibility modes, this value must be 1.

VEX/XOP.B (Bit 5). The bit-inverted equivalent of the REX.B bit, available only in the 3-byte prefix
format. A one-bit extension of either the ModRM.r/m field, to specify a GPR or XMM register, or of
the SIB base field, to specify a GPR. This permits access to all 16 GPR and YMM/XMM registers. In
32-bit protected and compatibility modes, this bit is ignored.

VEX/XOP.map_select (Bits [4:0]). The five-bit map select field is used to select an alternate
opcode map. The map_select encoding spaces for VEX and XOP are disjoint. Table 1-19 below lists
the encodings for VEX.map_select and Table 1-20 lists the encodings for XOP.map_select.

Table 1-19. VEX.map_select Encoding

Binary Value Opcode Map Analogous Legacy Opcode Map
00000 Reserved -
00001 VEX opcode map 1 | Secondary (“two-byte”) opcode map

30 Instruction Encoding

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

Table 1-19. VEX.map_select Encoding

Binary Value Opcode Map Analogous Legacy Opcode Map
00010 VEX opcode map 2 OF_38h (“three-byte”) opcode map
00011 VEX opcode map 3 OF_3Ah (“three-byte”) opcode map

00100 - 11111 Reserved -

Table 1-20. XOP.map_select Encoding

Binary Value Opcode Map
00000 - 00111 Reserved
01000 XOP opcode map 8
01001 XOP opcode map 9
01010 XOP opcode map 10 (Ah)
01011 — 11111 Reserved

AVX instructions are encoded using the VEX opcode maps 1-3. The AVX instruction set includes
instructions that provide operations similar to most legacy SSE instructions. For those AVX
instructions that have an analogous legacy SSE instruction, the VEX opcode maps use the same binary
opcode value and modifiers as the legacy version. The correspondence between the VEX opcode maps
and the legacy opcode maps are shown in Table 1-19 above.

VEX opcode maps 1-3 are also used to encode the FMA4 and FMA instructions. In addition, not all
legacy SSE instructions have AVX equivalents. Therefore, the VEX opcode maps are not the same as
the legacy opcode maps.

The XOP opcode maps are unique to the XOP instructions. The XOP.map_select value is restricted to
the range [08h:1Fh]. If the value of the XOP.map_select field is less than 8, the first two bytes of the
three-byte XOP escape sequence are interpreted as a form of the POP instruction.

Both legacy and extended opcode maps are covered in detail in Appendix A.
Byte 2

VEX/XOP.W (Bit 7). Function is instruction-specific. The bit is often used to configure source
operand order.

VEX/XOP.vvvv (Bits [6:3]). Used to specify an additional operand for three and four operand

instructions. Encodes an XMM or YMM register in inverted ones’ complement form, as shown in
Table 1-21.

Instruction Encoding 31

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

Table 1-21. VEX/XOP.vvvv Encoding

Binary Value Register Binary Value Register
0000 XMM15/YMM15 1000 XMMO7/YMMO7
0001 XMM14/YMM14 1001 XMMO06/YMMO06
0010 XMM13/YMM13 1010 XMMO05/YMMO05
0011 XMM12/YMM12 1011 XMMO04/YMMO04
0100 XMM11/YMM11 1100 XMMO03/YMMO03
0101 XMM10/YMM10 1101 XMMO02/YMMO02
0110 XMMO09/YMMO09 1110 XMMO01/YMMO1
0111 XMMO08/YMMO08 1111 XMMO00/YMMOO0

Values 0000h to 0111h are not valid in 32-bit modes. vvvv is typically used to encode the first source
operand, but for the VPSLLDQ, VPSRLDQ, VPSRLW, VPSRLD, VPSRLQ, VPSRAW, VPSRAD,
VPSLLW, VPSLLD, and VPSLLQ shift instructions, the field specifies the destination register.

VEX/XOP.L (Bit2). L = 0 specifies 128-bit vector length (XMM registers/128-bit memory
locations). L=1 specifies 256-bit vector length (YMM registers/256-bit memory locations). For SSE or
XOP instructions with scalar operands, the L bit is ignored. Some vector SSE instructions support only
the 128 bit vector size. For these instructions, L is cleared to 0.

VEX/XOP.pp (Bits [1:0]). Specifies an implied 66h, F2h, or F3h opcode extension which is used in a
way analogous to the legacy instruction encodings to extend the opcode encoding space. The
correspondence between the encoding of the VEX/XOP.pp field and its function as an opcode modifier
is shown in Table 1-22. The legacy prefixes 66h, F2h, and F3h are not allowed in the encoding of
extended instructions.

Table 1-22. VEX/XOP.pp Encoding

Binary Value | Implied Prefix
00 None
01 66h
10 F3h
11 F2h

1.9.2 Two-Byte Escape Sequence

All VEX-encoded instructions can be encoded using the three-byte escape sequence, but certain
instructions can also be encoded utilizing a more compact, two-byte VEX escape sequence. The
format of the two-byte escape sequence is shown in Figure 1-8 below.

32 Instruction Encoding

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
Byte 0 Byte 1
7 0|7 6 3 2 1 0
VEX R VWV ‘ L ‘ pp ‘

Figure 1-8. VEX Two-byte Escape Sequence Format

Prefix Byte Bit Mnemonic Description
0 [7:0] VEX VEX 2-byte encoding escape prefix
1 [7] R Inverted one-bit extension of ModRM.reg field
[6:3] VVVV Source or destination register selector, in ones’
complement format.
[2] L Vector length specifier
[1:0] pp Implied 66, F2, or F3 opcode extension.

Table 1-23. VEX Two-byte Escape Sequence Field Definitions

Byte 0 (VEX Prefix)
The VEX prefix for the two-byte escape sequence is encoded as C5h.
Byte 1

Note that the bit 7 of this byte is used to encode VEX.R instead of VEX.W as in the three-byte escape
sequence form. The R, vvvv, L, and pp fields are defined as in the three-byte escape sequence.

When the two-byte escape sequence is used, specific fields from the three-byte format take on fixed
values as shown in Table 1-24 below.

Table 1-24. Fixed Field Values for VEX 2-Byte Format

VEX Field Value
X 1
B 1
w 0
map_select 00001b

Although they may be encoded using the VEX three-byte escape sequence, all instructions that
conform with the constraints listed in Table 1-24 may be encoded using the two-byte escape sequence.
Note that the implied value of map select is 00001b, which means that only instructions included in
the VEX opcode map 1 may be encoded using this format.

VEX-encoded instructions that use the other defined values of map select (00010b and 00011b)
cannot be encoded using this a two-byte escape sequence format. Note that the VEX.pp field value is

Instruction Encoding 33

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

explicitly encoded in this form and can be used to specify any of the implied legacy prefixes as defined
in Table 1-22.

34 Instruction Encoding

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
2 Instruction Overview
2.1 Instruction Groups

For easier reference, the instruction descriptions are divided into five groups based on usage. The
following sections describe the function, mnemonic syntax, opcodes, affected flags, and possible
exceptions generated by all instructions in the AMD64 architecture:

e Chapter 3, “General-Purpose Instruction Reference ”—The general-purpose instructions are used
in basic software execution. Most of these load, store, or operate on data in the general-purpose
registers (GPRs), in memory, or in both. Other instructions are used to alter sequential program
flow by branching to other locations within the program or to entirely different programs.

e Chapter 4, “System Instruction Reference”—The system instructions establish the processor
operating mode, access processor resources, handle program and system errors, and manage
memory.

e “SSE Instruction Reference” in Volume 4—The Streaming SIMD Extensions (SSE) instructions
load, store, or operate on data located in the YMM/XMM registers. These instructions define both
vector and scalar operations on floating-point and integer data types. They include the SSE and
SSE2 instructions that operate on the YMM/XMM registers. Some of these instructions convert
source operands in YMM/XMM registers to destination operands in GPR, MMX, or x87 registers
or otherwise affect YMM/XMM state.

* “64-Bit Media Instruction Reference” in Volume 5—The 64-bit media instructions load, store, or
operate on data located in the 64-bit MMX registers. These instructions define both vector and
scalar operations on integer and floating-point data types. They include the legacy MMX™
instructions, the 3DNow!™ instructions, and the AMD extensions to the MMX and 3DNow!
instruction sets. Some of these instructions convert source operands in MMX registers to
destination operands in GPR, YMM/XMM, or x87 registers or otherwise affect MMX state.

* “x87 Floating-Point Instruction Reference” in Volume 5—The x87 instructions are used in legacy
floating-point applications. Most of these instructions load, store, or operate on data located in the
x87 ST(0)-ST(7) stack registers (the FPRO-FPR7 physical registers). The remaining instructions
within this category are used to manage the x87 floating-point environment.

The description of each instruction covers its behavior in all operating modes, including legacy mode
(real, virtual-8086, and protected modes) and long mode (compatibility and 64-bit modes). Details of
certain kinds of complex behavior—such as control-flow changes in CALL, INT, or FXSAVE
instructions—have cross-references in the instruction-detail pages to detailed descriptions in volumes
1 and 2.

Two instructions—CMPSD and MOV SD—use the same mnemonic for different instructions.
Assemblers can distinguish them on the basis of the number and type of operands with which they are
used.

Instruction Overview 35

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

2.2 Reference-Page Format

Figure 2-1 on page 37 shows the format of an instruction-detail page. The instruction mnemonic is
shown in bold at the top-left, along with its name. In this example, POPFD is the mnemonic and POP
to EFLAGS Doubleword is the name. Next, there is a general description of the instruction’s operation.
Many descriptions have cross-references to more detail in other parts of the manual.

Beneath the general description, the mnemonic is shown again, together with the related opcode(s) and
a description summary. Related instructions are listed below this, followed by a table showing the
flags that the instruction can affect. Finally, each instruction has a summary of the possible exceptions
that can occur when executing the instruction. The columns labeled “Real” and “Virtual-8086” apply
only to execution in legacy mode. The column labeled “Protected” applies both to legacy mode and
long mode, because long mode is a superset of legacy protected mode.

The 128-bit and 64-bit media instructions also have diagrams illustrating the operation. A few
instructions have examples or pseudocode describing the action.

36 Instruction Overview

AMDZU

24594—Rev. 3.32—March 202

1

AMDG64 Technology

Mnemonic and any operands Opcode Description of operation
AMDA1
24594 Rev.3.07 September 2003 AMD64 Technology

AAM

AH
AL

(AL/10d)

(AL mod 10d).

Converts the value in the A
AH (most significant) and A

In most modern assemblerg
by coding the instruction d
immediate byte value (ib) s
octal, D40Ah for decimal, a

Using this instruction in 64

ASCII Adjust After Multiply

bit mode generates an invalid-opcode exception.

L register from binary to two unpacked BCD digits in the
\L. (least significant) registers using the following formula:

, the AAM instruction adjusts to base-10 values. However,
rectly in binary, it can adjust to any base specified by the
uffixed onto the D4h opcode. For example, code D408h for
nd D40Ch for duodecimal (base 12).

Mnemonic Opcode Description
AAM D4 0A Create a pair of unpacked BCD values in AH and AL.
(Invalid in 64-bit mode.)
(None) D4ib Create a pair of unpacked values to the immediate byte base.
(Invalid in 64-bit mode.)
Related Instructions
AAA, AAD, AAS
rFLAGS Affected
ID |VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
u M M u M u
21 20 19 18 17 16 14 13-12 n 10 9 8 6 4 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M. Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Divide by zero, #DE X X X 8-bit immediate value was 0.
Invalid opcode, #UD X This instruction was executed in 64-bit mode.

AAM

63

“M” means the flag is either set or
cleared, dependinp on the result.

Possible exceptions
and causes, by mode of
operation

“Protected” column
covers both legacy

and long mode

Figure 2-1.

Alphabetic mnemonic locator

Format of Instruction-Detail Pages

Instruction Overview

37

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

2.3 Summary of Registers and Data Types

This section summarizes the registers available to software using the five instruction subsets described
in “Instruction Groups” on page 35. For details on the organization and use of these registers, see their
respective chapters in volumes 1 and 2.

2.3.1 General-Purpose Instructions

Registers. The size and number of general-purpose registers (GPRs) depends on the operating
mode, as do the size of the flags and instruction-pointer registers. Figure 2-2 shows the registers
available in legacy and compatibility modes.

register high low
encoding 8-bit 8-bit 16-bit 32-bit
0 AH@| AL | AX EAX
3 BH@)| BL BX EBX
1 CHp)| CL X ECX
2 DH)| DL DX EDX
6 SI SI ESI
7 DI DI EDI
5 BP BP EBP
4 Sp Sp ESP
31 16 15 0
FLAGS FLAGS EFLAGS
IP P EIP
3 0

Figure 2-2. General Registers in Legacy and Compatibility Modes

Figure 2-3 on page 39 shows the registers accessible in 64-bit mode. Compared with legacy mode,
registers become 64 bits wide, eight new data registers (R8—R15) are added and the low byte of all 16
GPRs is available for byte operations, and the four high-byte registers of legacy mode (AH, BH, CH,
and DH) are not available if the REX prefix is used. The high 32 bits of doubleword operands are zero-
extended to 64 bits, but the high bits of word and byte operands are not modified by operations in 64-

38 Instruction Overview

AMDZU

24594—Rev. 3.32—March 2021

AMDG64 Technology

bit mode. The RFLAGS register is 64 bits wide, but the high 32 bits are reserved. They can be written

with anything but they read as zeros (RAZ).

zero-extended
for 32-bit operands
<— not modified for 16-bit operands —>| low
<«<—— not modified for 8-bit operands ——>|8 bits
0 AH* | AL
3 BH*| BL
1 CH*| CL
2 DH*| DL
6 SIL**
o 7 DIL**
c
S5 5 BPL**
S
s 4 SPL**
[NN]
E 8 R8B
(%]
‘qa? 9 R9B
< 10 R10B
1 R11B
12 R12B
13 R13B
14 R14B
15 R15B
e
63 3231 16 15 87 0
0 I

63 32 31

0

16-bit

BX
CX
DX

SI

DI

BP
SP
R8W
R9wW
R10W
R1MW
R12wW
R13wW
R14W
R15W

RFLAGS
RIP

* Not addressable in REX prefix instruction forms
** Only addressable in REX prefix instruction forms

32-bit
EAX
EBX
ECX
EDX
ESI
EDI
EBP
ESP
R8D
R9D
R10D
R11D
R12D
R13D
R14D
R15D

Figure 2-3. General Registers in 64-Bit Mode

64-bit
RAX
RBX
RCX
RDX
RSI
RDI
RBP
RSP
R8
R9
R10
R11
R12
R13
R14
R15

For most instructions running in 64-bit mode, access to the extended GPRs requires a either a REX
instruction modification prefix or extended encoding encoding using the VEX or XOP sequences

(page 14).

Instruction Overview

39

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

Figure 2-4 shows the segment registers which, like the instruction pointer, are used by all instructions.
In legacy and compatibility modes, all segments are accessible. In 64-bit mode, which uses the flat
(non-segmented) memory model, only the CS, FS, and GS segments are recognized, whereas the
contents of the DS, ES, and SS segment registers are ignored (the base for each of these segments is
assumed to be zero, and neither their segment limit nor attributes are checked). For details, see
“Segmented Virtual Memory” in Volume 2.

Legacy Mode and 64-Bit
Compatibility Mode Mode
I cs
(Attributes only)
DS ignored
ES ignored
FS
FS (Base only)
GS
GS (Base only)
SS ignored
15 0 15 0

Figure 2-4. Segment Registers

Data Types. Figure 2-5 on page 41 shows the general-purpose data types. They are all scalar, integer
data types. The 64-bit (quadword) data types are only available in 64-bit mode, and for most
instructions they require a REX instruction prefix.

40 Instruction Overview

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

127 Signed Integer

S 16 bytes (64-bit mode only) gﬁggﬁord

S 8 bytes (64-bit mode only) Quadword

63 s 4 bytes Doubleword

31 s 2 bytes Word

15 s Byte

7 0

Unsigned Integer
127 0

16 bytes (64-bit mode only) gﬁggﬁord

8 bytes (64-bit mode only) Quadword

63 4 bytes Doubleword

3 2 bytes Word

15 Byte

Packed BCD

BCD Digit
7 3L Bit

Figure 2-5. General-Purpose Data Types

2.3.2 System Instructions

Registers. The system instructions use several specialized registers shown in Figure 2-6 on page 42.
System software uses these registers to, among other things, manage the processor’s operating
environment, define system resource characteristics, and monitor software execution. With the
exception of the RFLAGS register, system registers can be read and written only from privileged
software.

All system registers are 64 bits wide, except for the descriptor-table registers and the task register,
which include 64-bit base-address fields and other fields.

Instruction Overview 41

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021
Control Registers :" Extended-Feature-Enable Register Memory-Typing Registers
CRO C EFER MTRRcap
CR2 : MTRRdefType
CR3 . System-Configuration Register MTRRphysBasen
CR4 b SYSCFG MTRRphysMaskn
CR8 MTRRfixn
© System-Linkage Registers PAT
. . STAR TOP_MEM
System-Flags Register : AR TOP. MEMZ
RFLAGS :
CSTAR :
SFMASK Performance-Monitoring Registers :
Debug Registers FS.base TsC
DRO E GS.base PerfEvtSeln
DR1 KernelGSbase PerfCtrn
DR2 : SYSENTER_CS
DR3 . SYSENTER ESP Machine-Check Registers
DR6 : SYSENTER_EIP MCG_CAP
DR7 : MCG_STAT
Debug-Extension Registers MCG_CTL
Descriptor-Table Registers : DebugCt MCI_CTL
GDTR . LastBranchFromIP MC'—'STATUS
IDTR LastBranchTolP MC'_—ADDR
: LastIntFromIP MCi_MISC
LDTR :
LastIntTolP

Task Register
TR

Figure 2-6. System Registers

Data Structures. Figure 2-7 on page 43 shows the system data structures. These are created and
maintained by system software for use in protected mode. A processor running in protected mode uses
these data structures to manage memory and protection, and to store program-state information when
an interrupt or task switch occurs.

42 Instruction Overview

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
Segment Descriptors (Contained in Descriptor Tables) Task-State Segment
| Code | Gate
| Stack | Task-State Segment
| Data | Local-Descriptor Table

Descriptor Tables

...

Global-Descriptor Table Interrupt-Descriptor Table Local-Descriptor Table
Descriptor Gate Descriptor Descriptor .
Descriptor Gate Descriptor Descriptor .
Descriptor Gate Descriptor Descriptor .

...

Page-Map Level-4 Page-Directory Pointer Page Directory Page Table

..

Figure 2-7. System Data Structures

2.3.3 SSE Instructions

Registers. The SSE instructions operate primarily on 128-bit and 256-bit floating-point vector
operands located in the 256-bit YMM/XMM registers. Each 128-bit XMM register is defined as the
lower octword of the corresponding YMM register. The number of available YMM/XMM data
registers depends on the operating mode, as shown in Figure 2-8 below. In legacy and compatibility
modes, eight YMM/XMM registers (YMM/XMMO0-7) are available. In 64-bit mode, eight additional
YMM/XMM data registers (YMM/XMMS8-15) are available. These eight additional registers are
addressed via the encoding extensions provided by the REX, VEX, and XOP prefixes.

Instruction Overview 43

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

The MXCSR register contains floating-point and other control and status flags used by the 128-bit
media instructions. Some 128-bit media instructions also use the GPR (Figure 2-2 and Figure 2-3) and
the MMX registers (Figure 2-12 on page 48) or set or clear flags in the rFLAGS register (see
Figure 2-2 and Figure 2-3).

255 127 0
XMMO YMMO
XMMH1 YMMA1
XMM2 YMM2
XMM3 YMM3
XMM4 YMM4
XMM5 YMM5
XMM6 YMM6
XMM7 YMM7
XMM8 YMM8
XMM9 YMM9
XMM10 YMM10
XMM11 YMM11
XMM12 YMM12
XMM13 YMM13
XMM14 YMM14
XMM15 YMM15
Media eXtension Control and Status Register MXCSR
[| Available in all modes 31 0

[] Available only in 64-bit mode

Figure 2-8. SSE Registers

Data Types. The SSE instruction set architecture provides support for 128-bit and 256-bit packed
floating-point and integer data types as well as integer and floating-point scalars. Figure 2-9 below
shows the 128-bit data types. Figure 2-10 on page 46 and Figure 2-11 on page 47 show the 256-bit
data types. The floating-point data types include IEEE-754 single precision and double precision

types.

44 Instruction Overview

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology

127 115

Vector (Packed) Floating-Point — Double Precision and Single Precision
63 51 0

s exp

significand s exp significand

5 exp significand | exp significand |3 exp significand |§ exp significand

127 118 95 86 63 54 31 2 0
Vector (Packed) Signed Integer — Quadword, Doubleword, Word, Byte

s quadword s quadword

s doubleword s doubleword s doubleword s doubleword

s word |§ word § word |§ word |4 word § word & word § word

s byte f byte & byte [y byte s byte |5 byte [5 byte [§ byte [f| byte |5 byte [byte byte f byte [byte 5 byte |5 byte

127 19 111 103 95 87 79 71 63 5 47 39 31 23 15 7 0
Vector (Packed) Unsigned Integer — Quadword, Doubleword, Word, Byte
quadword quadword
doubleword doubleword doubleword doubleword
word word word word word word word word
byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte
127 19 111 103 95 87 79 71 63 5 47 39 31 23 15 7 0

Scalar Floating-Point — Double Precision and Single Precision'

|S| exp | significand
63 51

S|

exp | significand

. 31 22 o
Scalar Signed Integers

double quadword (octword)

127 |s| quadword

63 H doubleword

31 word
15 byte
Scalar Unsigned Integers ’ °
double quadword (octword)

127 | quadword

63 doubleword

31

Note: 1) A 16 bit Half-Precision Floating-Point Scalar is also defined.

Figure 2-9. 128-Bit SSE Data Types

Instruction Overview 45

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

Vector (Packed) Floating-Point — Double Precision and Single Precision

255 243 191 179 128

s exp significand s exp significand

s exp significand s exp significand o exp significand S| exp significand

255 246 223 214 191 182 159 150 128

127 115 63 51 0

s exp significand | exp significand

s exp significand s exp significand s exp significand s exp significand

127 118 95 86 63 54 31 22 0
Vector (Packed) Signed Integer — Double Quadword, Quadword, Doubleword, Word, Byte

s double quadword (octword)

s quadword s quadword

s doubleword s doubleword s doubleword s doubleword

s word s word s word s word s word s word sl word s word

S| byte [1 byte [1 byte [byte |1 byte 5| byte |3 byte [byte [y byte |1 byte [byte [y byte |1 byte 5 byte [1 byte |5 byte

255 247 239 231 223 215 207 199 191 183 175 167 159 151 143 135 128

s double quadword (octword)

s quadword s quadword

s doubleword s doubleword s doubleword s doubleword

s word | word | word | word | word | word | word | word

s| byte [f| byte | byte [y byte [s| byte s byte [{{ byte [byte | byte [f| byte | byte |f| byte [f| byte |3 byte [{{ byte [byte

127 19 11 103 9 87 79 71 63 5 47 39 31 23 15 7 0

Figure 2-10. SSE 256-bit Data Types

46

Instruction Overview

AMDZU

24594—Rev. 3.32—March 2021

AMDG64 Technology

Vector (Packed) Unsigned Integer — Double Quadword, Quadword, Doubleword, Word, Byte

double quadword (octword)
quadword quadword
doubleword doubleword doubleword doubleword
word word word word word word word word
byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte
255 247 239 231 223 215 207 199 191 183 175 167 159 151 143 135 128
double quadword (octword)
quadword quadword
doubleword doubleword doubleword doubleword
word word word word word word word word
byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte
127 19 11 103 95 87 79 7 63 55 47 39 31 23 15 7 0
Scalar Floating-Point — Double Precision and Single Precision’
s| exp | significand
63 51 s| exp | significand
31 22 0
Scalar Signed Integers
s double quadword
127 |s| quadword
63 |s| doubleword
31 | word
15 byte
7 0
Scalar Unsigned Integers
double quadword
127 | quadword
63 doubleword
31
Note: 1) A 16 bit Half-Precision Floating-Point Scalar is also defined.
Figure 2-11. SSE 256-Bit Data Types (Continued)

Instruction Overview

47

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

2.3.4 64-Bit Media Instructions

Registers. The 64-bit media instructions use the eight 64-bit MMX registers, as shown in
Figure 2-12. These registers are mapped onto the x87 floating-point registers, and 64-bit media
instructions write the x87 tag word in a way that prevents an x87 instruction from using MMX data.

Some 64-bit media instructions also use the GPR (Figure 2-2 and Figure 2-3) and the XMM registers
(Figure 2-8).

MMX Data Registers
63 0

mmx0

mmx]1

mmx2

mmx3

mmx4

mmx5

mmx6

mmx7

Figure 2-12. 64-Bit Media Registers

Data Types. Figure 2-13 on page 49 shows the 64-bit media data types. They include floating-point
and integer vectors and integer scalars. The floating-point data type, used by 3DNow! instructions,
consists of a packed vector or two IEEE-754 32-bit single-precision data types. Unlike other kinds of
floating-point instructions, however, the 3DNow!™ instructions do not generate floating-point
exceptions. For this reason, there is no register for reporting or controlling the status of exceptions in
the 64-bit-media instruction subset.

48 Instruction Overview

AMDZU

24594—Rev. 3.32—March 2021

Vector (Packed) Single-Precision Floating-Point

S exp significand S| exp significand
63 54 3 2 0
Vector (Packed) Signed Integers
s doubleword s doubleword
s word |{ word | word |{ word
s| byte [s| byte [s| byte [f| byte [s| byte |1 byte [s| byte [f| byte
63 55 47 39 3 23 15 70
Vector (Packed) Unsigned Integers
doubleword doubleword
word word word word
byte | byte | byte | byte | byte | byte | byte | byte
63 55 47 39 3 23 15 7 0
Signed Integers
s quadword
63 5 doubleword
3l s word
15 5| byte
7 0
Unsigned Integers
quadword
63 doubleword
3 word
15 byte
T
0
Figure 2-13. 64-Bit Media Data Types

AMDG64 Technology

Instruction Overview

49

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

2.3.5 x87 Floating-Point Instructions

Registers. The x87 floating-point instructions use the x87 registers shown in Figure 2-14. There are
eight 80-bit data registers, three 16-bit registers that hold the x87 control word, status word, and tag
word, and three registers (last instruction pointer, last opcode, last data pointer) that hold information
about the last x87 operation.

The physical data registers are named FPRO-FPR?7, although x87 software references these registers
as a stack of registers, named ST(0)-ST(7). The x87 instructions store operands only in their own 80-
bit floating-point registers or in memory. They do not access the GPR or XMM registers.

x87 Data Registers
79 0

fpro

fpr1

fpr2

fpr3

fpra

fprs

fpré

fpr7

Instruction Pointer (rIP) Control Word

Data Pointer (rDP) Status Word

63 Opcode Tag Word

Figure 2-14. x87 Registers

Data Types. Figure 2-15 on page 51 shows all x87 data types. They include three floating-point
formats (80-bit double-extended precision, 64-bit double precision, and 32-bit single precision), three
signed-integer formats (quadword, doubleword, and word), and an 80-bit packed binary-coded
decimal (BCD) format.

50 Instruction Overview

AMDZU

24594—Rev. 3.32—March 2021

Floating-Point

79 63
s exp i significand
7 s exp significand
63 °! s exp significand
3 2
Signed Integer
s 8 bytes
63 5 4 bytes
3 {2 bytes
15
Binary-Coded Decimal (BCD)
79 71
Figure 2-15. x87 Data Types
24 Summary of Exceptions

AMDG64 Technology

Double-Extended
Precision

Double Precision

Single Precision

Quadword
Doubleword

Word

Packed Decimal

Table 2-1 on page 52 lists all possible exceptions. The table shows the interrupt-vector numbers,
names, mnemonics, source, and possible causes. Exceptions that apply to specific instructions are
documented with each instruction in the instruction-detail pages that follow.

Instruction Overview

51

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

Table 2-1. Interrupt-Vector Source and Cause
Vector Interrupt (Exception) Mnemonic | Source Cause
0 Divide-By-Zero-Error #DE Software | DIV, IDIV, AAM instructions
1 Debug #DB Internal |Instruction accesses and data accesses
2 Non-Maskable-Interrupt #NMI External | External NMI signal
3 Breakpoint #BP Software | INT3 instruction
4 Overflow #OF Software | INTO instruction
5 Bound-Range #BR Software |BOUND instruction
6 Invalid-Opcode #UD Internal |Invalid instructions
7 Device-Not-Available #NM Internal | x87 instructions
8 Double-Fault #DF Internal |Interrupt during an interrupt
9 Coprocessor-Segment-Overrun — External |Unsupported (reserved)
10 Invalid-TSS 4TS Internal Ta§k-state segment access and task
switch
11 Segment-Not-Present #NP Internal | Segment access through a descriptor
12 Stack #SS Internal | SS register loads and stack references
13 General-Protection #GP Internal Ic\:/lhzr::]l?sry accesses and protection
14 Page-Fault #PF Internal (I;/Ineanglzr(yj/ accesses when paging
15 Reserved —
1o [peareentBcenion 1 e somwars 27 Toolngert e O mede
17 Alignment-Check #AC Internal | Memory accesses
18 | Machine-Check amc | M odel specific
19 SIMD Floating-Point #XF Internal | 128-bit media floating-point instructions
20 Reserved —
21 Control-Protection #CP Internal | Shadow Stack Protection checks
22—27 |Reserved (Internal and External) —
28 Hypervisor Injection Exception #HV Software | Event injection
29 VMM Communication Exception #VC Internal | Virtualization event
30 SVM Security Exception #SX External | Security-sensitive events
31 Reserved (Internal and External) —
0—255 |External Interrupts (Maskable) #INTR External |External interrupt signal
0—255 | Software Interrupts — Software | INTn instruction

52

Instruction Overview

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

2.5 Notation

2,51 Mnemonic Syntax

Each instruction has a syntax that includes the mnemonic and any operands that the instruction can
take. Figure 2-16 shows an example of a syntax in which the instruction takes two operands. In most
instructions that take two operands, the first (left-most) operand is both a source operand (the first
source operand) and the destination operand. The second (right-most) operand serves only as a source,
not a destination.

ADDPD xmm1, xmm2/mem128

Mnemonic

First Source Operand
and Destination Operand

Second Source Operand
Figure 2-16. Syntax for Typical Two-Operand Instruction

The following notation is used to denote the size and type of source and destination operands:

* cReg—Control register.

* dReg—Debug register.

* imm8—Byte (8-bit) immediate.

e imml6—Word (16-bit) immediate.

e immli6/32—Word (16-bit) or doubleword (32-bit) immediate.

e imm32—Doubleword (32-bit) immediate.

e imm32/64—Doubleword (32-bit) or quadword (64-bit) immediate.
e imm64—Quadword (64-bit) immediate.

* mem—An operand of unspecified size in memory.

* mem8—Byte (8-bit) operand in memory.

* meml6—Word (16-bit) operand in memory.

* meml6/32—Word (16-bit) or doubleword (32-bit) operand in memory.
* mem32—Doubleword (32-bit) operand in memory.

* mem32/48—Doubleword (32-bit) or 48-bit operand in memory.

* mem48—A48-bit operand in memory.

Instruction Overview 53

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021

mem64—Quadword (64-bit) operand in memory.

mem 128—Double quadword (128-bit) operand in memory.

mem16:16—Two sequential word (16-bit) operands in memory.

mem16:32—A doubleword (32-bit) operand followed by a word (16-bit) operand in memory.
mem32real—Single-precision (32-bit) floating-point operand in memory.

mem 1 6int— Word (16-bit) integer operand in memory.

mem32int—Doubleword (32-bit) integer operand in memory.
memo64real—Double-precision (64-bit) floating-point operand in memory.
memo64int—Quadword (64-bit) integer operand in memory.
memd80real—Double-extended-precision (80-bit) floating-point operand in memory.
mem80dec—~80-bit packed BCD operand in memory, containing 18 4-bit BCD digits.
memZ2env—16-bit x87 control word or x87 status word.

mem14/28env—14-byte or 28-byte x87 environment. The x87 environment consists of the x87
control word, x87 status word, x87 tag word, last non-control instruction pointer, last data pointer,
and opcode of the last non-control instruction completed.

mem94/108env—94-byte or 108-byte x87 environment and register stack.
memJ [2env—>512-byte environment for 128-bit media, 64-bit media, and x87 instructions.
mmx—Quadword (64-bit) operand in an MMX register.

mmx[—Quadword (64-bit) operand in an MMX register, specified as the left-most (first) operand
in the instruction syntax.

mmx2—Quadword (64-bit) operand in an MMX register, specified as the right-most (second)
operand in the instruction syntax.

mmx/mem32—Doubleword (32-bit) operand in an MMX register or memory.
mmx/mem64—Quadword (64-bit) operand in an MMX register or memory.

mmx 1/mem64—Quadword (64-bit) operand in an MMX register or memory, specified as the left-
most (first) operand in the instruction syntax.

mmx2/mem64—Quadword (64-bit) operand in an MMX register or memory, specified as the right-
most (second) operand in the instruction syntax.

moffset—Direct memory offset that specifies an operand in memory.

moffset8—Direct memory offset that specifies a byte (8-bit) operand in memory.

moffset] 6—Direct memory offset that specifies a word (16-bit) operand in memory.
moffset32— Direct memory offset that specifies a doubleword (32-bit) operand in memory.
moffset64—Direct memory offset that specifies a quadword (64-bit) operand in memory.
pntrl6:16—Far pointer with 16-bit selector and 16-bit offset.

pntrl6:32—Far pointer with 16-bit selector and 32-bit offset.

reg—QOperand of unspecified size in a GPR register.

54

Instruction Overview

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology

reg8—Byte (8-bit) operand in a GPR register.

regl6—Word (16-bit) operand in a GPR register.

regl6/32—Word (16-bit) or doubleword (32-bit) operand in a GPR register.
reg32—Doubleword (32-bit) operand in a GPR register.
reg64—Quadword (64-bit) operand in a GPR register.

reg/mem8—Byte (8-bit) operand in a GPR register or memory.
reg/mem16—Word (16-bit) operand in a GPR register or memory.
reg/mem32—Doubleword (32-bit) operand in a GPR register or memory.
reg/mem64—Quadword (64-bit) operand in a GPR register or memory.
rel8off—Signed 8-bit offset relative to the instruction pointer.
rell6off—Signed 16-bit offset relative to the instruction pointer.
rel32off—Signed 32-bit offset relative to the instruction pointer.

segReg or sReg—Word (16-bit) operand in a segment register.
ST(0)—x87 stack register 0.

ST(i)—x87 stack register i, where i is between 0 and 7.

xmm—Double quadword (128-bit) operand in an XMM register.

xmmI—Double quadword (128-bit) operand in an XMM register, specified as the left-most (first)
operand in the instruction syntax.

xmm2—Double quadword (128-bit) operand in an XMM register, specified as the right-most
(second) operand in the instruction syntax.

xmm/mem64—Quadword (64-bit) operand in a 128-bit XMM register or memory.
xmm/mem128—Double quadword (128-bit) operand in an XMM register or memory.

xmm1/mem128—Double quadword (128-bit) operand in an XMM register or memory, specified as
the left-most (first) operand in the instruction syntax.

xmm2/mem128—Double quadword (128-bit) operand in an XMM register or memory, specified as
the right-most (second) operand in the instruction syntax.

ymm—Double octword (256-bit) operand in an YMM register.

ymmI—Double octword (256-bit) operand in an YMM register, specified as the left-most (first)
operand in the instruction syntax.

ymmZ2—Double octword (256-bit) operand in an YMM register, specified as the right-most
(second) operand in the instruction syntax.

ymm/mem64—Quadword (64-bit) operand in a 256-bit YMM register or memory.
ymm/mem128—Double quadword (128-bit) operand in an YMM register or memory.

ymm1/mem256—Double octword (256-bit) operand in an YMM register or memory, specified as
the left-most (first) operand in the instruction syntax.

Instruction Overview 55

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021

ymm2/mem256—Double octword (256-bit) operand in an YMM register or memory, specified as
the right-most (second) operand in the instruction syntax.

2.5.2 Opcode Syntax

In addition to the notation shown above in “Mnemonic Syntax” on page 52, the following notation
indicates the size and type of operands in the syntax of an instruction opcode:

/digit—Indicates that the ModRM byte specifies only one register or memory (r/m) operand. The
digit is specified by the ModRM reg field and is used as an instruction-opcode extension. Valid
digit values range from 0 to 7.

/r—Indicates that the ModRM byte specifies both a register operand and a reg/mem (register or
memory) operand.

cb, cw, cd, cp—Specifies a code-offset value and possibly a new code-segment register value. The
value following the opcode is either one byte (cb), two bytes (cw), four bytes (cd), or six bytes
(cp).

ib, iw, id, ig—Specifies an immediate-operand value. The opcode determines whether the value is
signed or unsigned. The value following the opcode, ModRM, or SIB byte is either one byte (ib),
two bytes (iw), or four bytes (id). Word and doubleword values start with the low-order byte.

+rb, +rw, +rd, +rq—Specifies a register value that is added to the hexadecimal byte on the left,
forming a one-byte opcode. The result is an instruction that operates on the register specified by
the register code. Valid register-code values are shown in Table 2-2.

m64—Specifies a quadword (64-bit) operand in memory.

+i—Specifies an x87 floating-point stack operand, ST(7). The value is used only with x87 floating-
point instructions. It is added to the hexadecimal byte on the left, forming a one-byte opcode. Valid
values range from 0 to 7.

Table 2-2. +rb, +rw, +rd, and +rq Register Value

REX.B Val Specified Register
alue
Bit' +rb +rw +rd +rq
0 AL AX EAX RAX
1 CL CX ECX RCX
2 DL DX EDX RDX
OREX 3 BL BX EBX RBX
or no
Prefix 4 AH, SPL’ SP ESP RSP
5 CH, BPL' BP EBP RBP
6 DH, SILT Sl ESI RSI
7 BH, DIL' DI EDI RDI
1. See “REX Prefix” on page 14.

56

Instruction Overview

AMDZU

24594—Rev. 3.32—March 2021

AMDG64 Technology

Table 2-2. +rb, +rw, +rd, and +rq Register Value (continued)
REX.B Specified Register
Bit" Value +rb +rw +rd +rq
0 R8B R8W R8D R8
1 R9B ROwW R9D R9
2 R10B R10W R10D R10
3 R11B R11W R11D R11
! 4 R12B R12W R12D R12
5 R13B R13W R13D R13
6 R14B R14W R14D R14
7 R15B R15W R15D R15
1. See "“REX Prefix” on page 14.

2.5.3 Pseudocode Definition

Pseudocode examples are given for the actions of several complex instructions (for example, see
“CALL (Near)” on page 126). The following definitions apply to all such pseudocode examples:

[1777
// Pseudo Code Definition
[17777777777777777777777777777777777777/77
//

// Comments start with double slashes.

//

// '=' can mean "is", or assignment based on context
// '==' is the equals comparison operator

//

117777777777 7777777777777777777777777/7777777777/7777777777777777777777777777777777
// Constants
[177777777777777777777777777777777777/7777777777/7777777777777777777777777777777777

0 // numbers are in base-10 (decimal), unless followed by a suffix
0000 _0001b // a number in binary notation, underbars added for readability
FFEO _0000h // a number expressed in hexadecimal notation

// in the following, '&&' is the logical AND operator. See "Logical Operators"
// below.

// reg[fld] identifies a field (one or more bits) within architected register
// or within a sub-element of a larger data structure. A dot separates the

// higher-level data structure name from the sub-element name.

//

CS.desc = Code Segment descriptor // CS.desc has sub-elements: base, limit, attr
SS.desc = Stack Segment descriptor // SS.desc has the same sub-elements
CS.desc.base = base subfield of CS.desc

CS = Code Segment Register

SS Stack Segment Register

CPL = Current Privilege Level (0 <= CPL <= 3)

REAL MODE = (CRO[PE] == 0)

Instruction Overview 57

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021
PROTECTED MODE = ((CRO[PE] == 1) && (RFLAGS[VM] == 0))

VIRTUAL MODE = ((CRO[PE] == 1) && (RFLAGS[VM] == 1))

LEGACY MODE = (EFER[LMA] == 0)

LONG_MODE = (EFER[LMA] == 1)

64BIT MODE = ((EFER[LMA]==1) && (CS desc.attr[L] == 1) && (CS _desc.attr[D] == 0))
COMPATIBILITY MODE = (EFER[LMA] == 1) && (CS_desc.attr[L] == 0)

PAGING _ENABLED = (CRO[PG] == 1)

ALIGNMENT CHECK ENABLED = ((CRO[AM] == 1) && (RFLAGS[AC] == 1) && (CPL == 3))

OPERAND SIZE = 16, 32, or 64 // size, in bits, of an operand

// OPERAND SIZE depends on processor mode, the current code segment descriptor
// default operand size [D], presence of the operand size override prefix (66h)
// and, in 64-bit mode, the REX prefix.

// NOTE: Specific instructions take 8-bit operands, but for these instructions,
// operand size is fixed and the variable OPERAND SIZE is not needed.

ADDRESS SIZE = 16, 32, or 64 // size, in bits, of the effective address for
// memory reads. ADDRESS SIZE depends processor mode, the current code segment
// descriptor default operand size [D], and the presence of the address size
// override prefix (67h)

STACK SIZE = 16, 32, or 64 // size, in bits of stack operation operand
// STACK _SIZE depends on current code segment descriptor attribute D bit and
// the Stack Segment descriptor attribute B bit.

L1177 7777777777777 777777777 777
// Architected Registers

L1177 7777777777777 77777777 77
// Identified using abbreviated names assigned by the Architecture; can represent
// the register or its contents depending on context.

RAX = the 64-bit contents of the general-purpose register

EAX = 32-bit contents of GPR EAX

AX 16-bit contents of GPR AX

AL lower 8 bits of GPR AX

AH = upper 8 bits of GPR AX

index of (reg) = value used to encode the register.
index of (AX) = 0000b
index of (RAX) = 0000b

// in legacy and compatibility modes the msb of the index is fixed as 0

L1177 777 7777777777 77777777777/777777777777777777777/777777777777777777777777777777
// Defined Variables
L1177 77777 7777777777777 777777777777777777777777777/777777777777777777777777777777

old RIP RIP at the start of current instruction
old RSP = RSP at the start of current instruction
old RFLAGS = RFLAGS at the start of the instruction

58 Instruction Overview

AMDZU

24594—Rev. 3.32—March 2021

old |
old
old
old
old |
old

CS
DS
ES
F'S
GS
SS

RIP =

RSP
RBP

RFLAGS
next RIP =

= CS
= DS
= ES
= FS
= GS
= S8

selector at
selector at
selector at
selector at
selector at
selector at

the
the
the
the
the
the

start
start
start
start
start
start

the current RIP register
the current RSP register
the current RBP register
= the current RFLAGS register

CS.desc

base

SS.desc

SRC

SRC1
SRC2
SRC3
IMMS8
IMM1
IMM3
IMM6
DEST

temp_* // 64-bit

base

6
2
4

of current
of current
of current
of current
of current
of current

RIP at start of next instruction

= the current CS descriptor, includi

limit attr

= the current SS descriptor, includi

limit attr

the instruction’s source operand

= the instruction's first source operand

the instruction's second source operand

the instruction's third source operand
8-bit immediate encoded in the instruction
16-bit immediate encoded
32-bit immediate encoded
64-bit immediate encoded

instruction’s destination

temp * desc

NULL

//
//
//

in the inst
in the inst
in the inst
register

temporary register

temporary descriptor, with
if it points to a block of memory: base limit attr
if it’s a gate descriptor:

0000h // null selector is all zeros

instruction
instruction
instruction
instruction
instruction
instruction

ng the subfields:

ng the subfields:

ruction
ruction
ruction

sub-elements:

offet segment attr

AMDG64 Technology

L1177 77777 777777777777 77
// Exceptions

L1117 7T 0077777770077 777 7077777770777 77770777777 7777777777777777777777777777777777

error code in parenthesis

EXCEPTION
EXCEPTION

// possible exception types:

#DE
#DB
#BP
#OF
#BR
#UD
#NM
#DF
#TS

//
//
//
//
//
//
//
//
//

[#GP (0)]
[#UD]

// Signals an exception;

// if no error code

Divide-By-Zero-Error Exception (Vecto
Debug Exception
INT3 Breakpoint Exception

INTO Overflow Exception
Bound-Range Exception
Invalid-Opcode Exception

(Vector 1)

(Vec

(Vector 3)

(Vector 4)

tor 5)

(Vector 6)

Device-Not-Available Exception (Vecto
Double-Fault Exception (Ve

Invalid-TSS Exception

(Vec

ctor 8)
tor 10)

r 0)

r 7)

Instruction Overview

59

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

#NP // Segment-Not-Present Exception (Vector 11)

#SS // Stack Exception (Vector 12)

#GP // General-Protection Exception (Vector 13)

#PF // Page-Fault Exception (Vector 14)

#MF // x87 Floating-Point Exception-Pending (Vector 16)
#AC // Alignment-Check Exception (Vector 17)

#MC // Machine-Check Exception (Vector 18)

#XF // SIMD Floating-Point Exception (Vector 19)

[I11170777
// Implicit Assignments

LITTT7 0777777070777 77770777777 777 7777770777777 7777777777777777777777777777777777

// V,7Z,A,S are integer variables, assigned a value when an instruction begins
// executing (they can be assigned a different value in the middle of an
// instruction, if needed)

IF (OPERAND SIZE == 16) V = 2
IF (OPERAND SIZE == 32) V = 4
IF (OPERAND SIZE == 64) V = 8
IF (OPERAND SIZE == 16) Z = 2
IF (OPERAND SIZE == 32) Z = 4
IF (OPERAND SIZE == 64) 7 = 4
IF (ADDRESS SIZE == 16) A = 2
IF (ADDRESS SIZE == 32) A = 4
IF (ADDRESS SIZE == 64) A = 8
IF (STACK SIZE == 16) S =2
IF (STACK SIZE == 32) S =4
IF (STACK SIZE == 64) S =8

JIT17070 7777777077777 7707777777777 777777777777 77777777777777777777777777777777777
// Bit Range Inside a Register

L1117 7 0007777777007 7 777770777777 7777 7777770777777 777777777 7777777777777777777777777

temp datalx:y] // Bits x through y (inclusive) of temp data

L1117 7777777777777 77777777 77
// Variables and data types

L1117 7T 0077777770077 777 7077777770777 77770777777 7777777777777777777777777777777777

NxtValue = 5 //default data type is unsigned int.

int //abstract data type representing an integer

bool //abstract data type; either TRUE or FALSE

vector //An array of data elements. Individual elements are accessed via
//an unsigned integer zero-based index. Elements have a data type.

bit //a single bit

byte //8-bit value

word //16-bit value

doubleword //32-bit value

quadword //64-bit value

octword //128-bit value

double octword //256-bit wvalue

60 Instruction Overview

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

unsigned int aval //treat aval as an unsigned integer value

signed int valx //treat valx as a signed integer value
bit vector b _vect //b vect is an array of data elements. Each element is a bit.
b vect[5] //The sixth element (bit) in the array. Indices are O-based.

L1177 7777777777777 77777777 777
// Elements Within a packed data type

[I1777 7777707777777 777777777777 77
// element i of size w occupies bits [wi-1:wi]

L1177 7777777777777 777777777 777
// Moving Data From One Register To Another
L1177 7777777777777 777777777 777
temp dest.b = temp src; // l-byte move (copies lower 8 bits of temp src to

// temp dest, preserving the upper 56 bits of temp dest)
temp dest.w = temp src; // 2-byte move (copies lower 16 bits of temp src to

// temp dest, preserving the upper 48 bits of temp dest)
temp dest.d = temp src; // 4-byte move (copies lower 32 bits of temp src to

// temp dest; zeros out the upper 32 bits of temp dest)
temp dest.q = temp src; // 8-byte move (copies all 64 bits of temp src to

// temp dest)
temp dest.v = temp src; // 2-byte move if V==2

// 4-byte move if V==

// 8-byte move if V==8
temp dest.z = temp src; // 2-byte move if Z==

// 4-byte move if Z==
temp dest.a = temp src; // 2-byte move if A==2

// 4-byte move if A==

// 8-byte move if A==
temp dest.s = temp src; // 2-byte move if S==2

// 4-byte move if S==

// 8-byte move if S==

L1177 7777777777777 77777777 777
// Arithmetic Operators
L1177 0777777777777 77777777 77

a + b // integer addition

a-b // integer subtraction

a * b // integer multiplication

a/ b // integer division. Result is the quotient

a % b // modulo. Result is the remainder after a is divided by b

// multiplication has precedence over addition where precedence is not explicitly
// indicated by grouping terms with parentheses

L1111 7077
// Bitwise Operators

L1177 777
// temp, a, and b are values or register contents of the same size

temp = a AND b; // Corresponding bits of a and b are logically ANDed together

Instruction Overview 61

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

temp = a OR b; // Corresponding bits of a and b are logically ORed together

temp = a XOR Db; // Each bit of temp is the exclusive OR of the corresponding
// bits of a and b

NOT a; // Each bit of temp is the complement of the corresponding
// bit of a

temp

// Concatenation
value = {fieldl, field2,100b}; //pack values of fieldl, field2 and 100b
size of (value) = (size of (fieldl) + size of(field2) + 3)

[I11170777
// Logical Shift Operators

LITTT7 0077777700777 7777077777777 7777770777777 77777777 77777777777777777777777777

temp = a << b; // Result is a shifted left by b Dbit positions. Zeros are
// shifted into vacant positions. Bits shifted out are lost.
temp = a >> b; // Result is a shifted right by b bit positions. Zeros are

// shifted into vacant positions. Bits shifted out are lost.

[I1777 7777777777777 777777777777 77
// Logical Operators

L1177 77777 7077777777777 77
// a boolean variable can assume one of two values (TRUE or FALSE)

// In these examples, FOO, BAR, CONE, and HEAD have been defined to be boolean

// variables

FOO && BAR // Logical AND

FOO || BAR // Logical OR

'FOO // Logical complement (NOT)

LITTT7 0007777777007 777770777777 7777 777770777777 7777777777777777777777777777777777

// Comparison Operators

L1177 7 7007777777007 777770777777 7777 7777770777777 777777777 7777777777777777777777777

// a and b are integer values. The result is a boolean value.

a == // if a and b are equal, the result is TRUE; otherwise it is FALSE.

al!=»b // if a and b are not equal, the result is TRUE; otherwise it is FALSE.

a >b // if a is greater than b, the result is TRUE; otherwise it is FALSE.

a<b // if a is less than b, the result is TRUE; otherwise it is FALSE.

a>=obD // 1if a is greater than or equal to b, the result is TRUE; otherwise
// it is FALSE.

a <=b // if a is less than or equal to b, the result is TRUE; otherwise

// it is FALSE.
L1117 0777777777777 777777777 777
// Logical Expressions
L1117 777 7077777777777 7777777777 777
// Logical binary (two operand) and unary (one operand) operators can be combined
// with comparison operators to form more complex expressions. Parentheses are
// used to enclose comparison terms and to show precedence. If precedence is not
// explicitly shown, logical AND has precedence over logical OR. Unary operators
// have precedence over binary operators.

FOO && (a < b) || !BAR // evaluate the comparison a < b first, then
// BND this with FOO. Finally OR this intermediate result

62 Instruction Overview

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

// with the complement of BAR.

// Logical expressions can be English phrases that can be evaluated to be TRUE

// or FALSE. Statements assume knowledge of the system architecture (Volumes 1 and
/] 2).
[1117171777

IF (it is raining)
close the window

J1T17077 7777777777777 7 7777777777777 77777777777 77777777777777777777777777777777777
// Assignment Operators
JIT17077 7777777777777 7777777777777 777777777777 7777 777777777777 7777777777777777777
a=a+b // The value a is assigned the sum of the values a and b

//
temp = R1 // The contents of the register temp is replaced by a copy of the

// contents of register RI1.

RO += 2 // RO is assigned the sum of the contents of RO and the integer 2.
//

R5 |= R6 // R5 is assigned the result of the bit-wise OR of the contents of R5
// and R6. Contents of R6 is unchanged.

R4 &= R7 // R4 is assigned the result of the bit-wise AND of the contents of

// R4 and R7. Contents of R7 is unchanged.

LITTT7 0077777770077 777 707777777777 7777 770777777 7777777777777777777777777777777777
// IF-THEN-ELSE

L1177 7777777777777 77777777 77
IF (FOO) <expression> // evaluation of <expression> is dependent on FOO
// being TRUE. If FOO is FALSE, <expression> is not
// evaluated.

IF (FOO0)
<dependent expressionl> // scope of IF is indicated by indentation

<dependent expressionx>

IF (FOO) // If FOO is TRUE, <dependent expression> is
// evaluated and the remaining ELSEIF and ELSE
<dependent expression> // clauses are skipped.
//
ELSIF (BAR) // IF FOO is FALSE and BAR is TRUE, <alt expression>
<alt expression> // 1s evaluated and the subsequent ELSEIF or ELSE
// clauses are skipped.
ELSE
<default expressions> // evaluated if all the preceeding IF and ELSEIF
// conditions are FALSE.
IF ((FOO && BAR) || (CONE && HEAD)) // The condition can be an expression.

<dependent expressions>

LI 7171777
// Loops

Instruction Overview 63

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

L1177 777777777777 777
FOR 1 = <init val> to <final val>, BY <step>
<expression> // scope of loop is indicated by indentation
// 1if <step> = 1, may omit "BY" clause

// nested loop example

temp = 0 //initialize temp
FOR i = 0 to 7 // 1 takes on the values 0 through 7 in succession
temp += 1 // In the outer loop. Evaluated a total of 8 times.
For j =0 to 7, BY 2 // 7 takes on the values 0, 2, 4, and 6; but not 7.
<inner-most exp> // This will be evaluated a total of 8 * 4 times.

<next expression outside both loops>
// C Language form of loop syntax is also allowed

FOR (i = 0; 1 < MAX; i++)
{
<expressions> //evaluated MAX times

}

L1177 7777777777777 777777777 777
// Functions
L1117 777 7777777777777 777777777 777
// Syntax for function definition
<return data type> <function name>(argument,..)

<expressions>
RETURN <result>

JIT17077 7770777777777 777777777 7777777777777 777777777777777777777777777

// Built-in Functions

[I717070 7770777777777 7707777777777 7777777777777 777777777777777/7777777777777777777

SignExtend(arg) // returns value of arg sign extended to the width of the data
// type of the function. Data type of function is inferred from
// the context of the function's invocation.

ZeroExtend(arg) // returns value of arg =zero extended to the width of the data
// type of the function. Data type of function is inferred from
// the context of the function's invocation.

indexof (req) //returns binary value used to encode reg specification

L1117 7077777777777 777777777 77
// READ MEM
// General memory read. This zero-extends the data to 64 bits and returns it.

L1177 0077777770077 7777777777777 7777770777777 7707777777 7777777777777777777777777

usage:
temp = READ MEM.x [seg:offset] // where x is one of {v, z, b, w, d, g}
// and denotes the size of the memory read

64 Instruction Overview

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
definition:
IF ((seg AND OxFFFC) == NULL)

// GP fault for using a null segment to reference memory
EXCEPTION [#GP(0)]

IF ((seg==CS) || (seg==DS) || (seg==ES) || (seg==FS) || (seg==GS))
// CS,DS,ES,FS,GS check for segment limit or canonical

IF ((!64BIT MODE) && (offset is outside seg’s limit))
// #GP fault for segment limit violation in non-64-bit mode
EXCEPTION [#GP(0)]

IF ((64BIT_MODE) && (offset is non-canonical))
// #GP fault for non-canonical address in 64-bit mode
EXCEPTION [#GP (0)]

ELSIF (seg==SS) // SS checks for segment limit or canonical

IF ((!64BIT MODE) && (offset is outside seg’s limit))
// stack fault for segment limit violation in non-64-bit mode
EXCEPTION [#SS(0)]

IF ((64BIT_MODE) && (offset is non-canonical))
// stack fault for non-canonical address in 64-bit mode
EXCEPTION [#SS(0)]

ELSE // ((seg==GDT) || (seg==LDT) || (seg==IDT) || (seg==TSS))
// GDT,LDT, IDT,TSS check for segment limit and canonical

IF (offset > seg.limit)
// #GP fault for segment limit violation in all modes
EXCEPTION [#GP(0)]

IF ((LONG_MODE) && (offset is non-canonical))
EXCEPTION [#GP(0)] // #GP fault for non-canonical address in long mode

IF ((ALIGNMENT CHECK ENABLED) && (offset misaligned, considering its
size and alignment))
EXCEPTION [#AC(0)]

IF ((64 bit mode) && ((seg==CS) || (seg==DS) || (seg==ES) || (seg==SS))
temp linear = offset

ELSE
temp linear = seg.base + offset

IF ((PAGING _ENABLED) && (virtual-to-physical translation for temp linear
results in a page-protection violation))
EXCEPTION [#PF (error code)] // page fault for page-protection violation
// (U/S violation, Reserved bit violation)

Instruction Overview 65

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

IF ((PAGING ENABLED) && (temp linear is on a not-present page))
EXCEPTION [#PF (error code)] // page fault for not-present page

temp data = memory [temp linear].x // zero-extends the data to 64
// bits, and saves it in temp data

RETURN (temp data) // return the zero-extended data
L1177 7777777777777 77777777 77

// WRITE MEM // General memory write
L1177 7777777777777 777777777 777

usage:
WRITE MEM.x [seg:offset] = temp.x // where <X> is one of these:
// {V, Z, B, W, D, Q} and denotes the
// size of the memory write
definition:
IF ((seg & OxXFFFC)== NULL) // GP fault for using a null segment
// to reference memory
EXCEPTION [#GP (0)]
IF ((seg==CS) || (seg==DS) || (seg==ES) || (seg==FS) || (seg==GS))
// CS,DS,ES,FS,GS check for segment limit or canonical
IF ((!64BIT MODE) && (offset is outside seg’s limit))

// #GP fault for segment limit violation in non-64-bit mode
EXCEPTION [#GP (0)]

IF ((64BIT_MODE) && (offset is non-canonical))
// #GP fault for non-canonical address in 64-bit mode
EXCEPTION [#GP (0)]

ELSEIF (seg==SS) // SS checks for segment limit or canonical

IF ((!64BIT MODE) && (offset is outside seg’s limit))
// stack fault for segment limit violation in non-64-bit mode
EXCEPTION [#SS(0)]

IF ((64BIT_MODE) && (offset is non-canonical))
// stack fault for non-canonical address in 64-bit mode
EXCEPTION [#SS(0)]

ELSE // ((seg==GDT) || (seg==LDT) || (seg==IDT) || (seg==TSS))

// GDT,LDT, IDT,TSS check for segment limit and canonical

IF (offset > seg.limit)
// #GP fault for segment limit violation in all modes
EXCEPTION [#GP (0)]

IF ((LONG_MODE) && (offset is non-canonical))
// #GP fault for non-canonical address in long mode
EXCEPTION [#GP (0)]

IF ((ALIGNMENT CHECK ENABLED) && (offset is misaligned, considering
its size and alignment))

EXCEPTION [#AC(0)]

66 Instruction Overview

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
IF ((64 bit mode) && ((seg==CS) || (seg==DS) || (seg==ES) || (seg==S8))
temp linear = offset
ELSE
temp linear = seg.base + offset

IF ((PAGING ENABLED) && (the virtual-to-physical translation for
temp linear results in a page-protection violation))

{
EXCEPTION [#PF (error code)]
// page fault for page-protection violation
// (U/S violation, Reserved bit violation)

}

IF ((PAGING_ENABLED) && (temp linear is on a not-present page))
EXCEPTION [#PF (error code)] // page fault for not-present page

memory [temp linear].x = temp.x // write the bytes to memory

[1777
// PUSH // Write data to the stack

LITTT7T007 7777777777777 707777777777 7777 770777777 7777777777777777777777777777777777

usage:
PUSH.x temp // where x is one of these: {v, z, b, w, d, g} and
// denotes the size of the push
definition:
WRITE MEM.x [SS:RSP.s - X] = temp.x // write to the stack
RSP.s = RSP - X // point RSP to the data just written

L1177 77777777 7777777777777 77
// POP // Read data from the stack, zero-extend it to 64 bits
L1177 777777777777777777777777/777

usage:
POP.x temp // where x is one of these: {v, z, b, w, d, g} and
// denotes the size of the pop
definition:
temp = READ MEM.x [SS:RSP.s] // read from the stack
RSP.s = RSP + X // point RSP above the data just read

[IT17070 7770777077777 7777777777777 777
// READ DESCRIPTOR // Read 8-byte descriptor from GDT/LDT, return the descriptor
[I717770 7770777077777 7777777777777 777

Instruction Overview 67

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

usage:
temp descriptor = READ DESCRIPTOR (selector, chktype)
// chktype field is one of the following:

// cs_chk used for far call and far jump
// clg chk used when reading CS for far call or far jump through call gate
// ss_chk used when reading SS

// iret chk used when reading CS for IRET or RETF
// intcs_chk wused when readin the CS for interrupts and exceptions

definition:

temp offset = selector AND Oxfff8 // upper 13 bits give an offset
// in the descriptor table

IF (selector.TI == 0) // read 8 bytes from the gdt, split it into
// (base,limit,attr) if the type bits
temp desc = READ MEM.qg [gdt:temp offset]
// indicate a block of memory, or split
// it into (segment,offset,attr)
// if the type bits indicate
// a gate, and save the result in temp desc
ELSE
temp desc = READ MEM.qg [ldt:temp offset]
// read 8 bytes from the LDT, split it into
// (base,limit,attr) if the type bits
// indicate a block of memory, or split
// it into (segment,offset,attr) if the type
// bits indicate a gate, and save the result
// in temp desc

IF (selector.rpl or temp desc.attr.dpl is illegal for the current mode/cpl)
EXCEPTION [#GP (selector)]

IF (temp desc.attr.type is illegal for the current mode/chktype)
EXCEPTION [#GP (selector)]

IF (temp_desc.attr.p==0)
EXCEPTION [#NP (selector)]

RETURN (temp desc)

[IT17070 7770777777777 7777777777777 777
// READ IDT // Read an 8-byte descriptor from the IDT, return the descriptor

LITTT7T 0077777770077 777 7077777777777 777770777777 7777777777777777777777777777777777

usage:
temp idt desc = READ IDT (vector)
// "vector" is the interrupt vector number

68 Instruction Overview

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
definition:
IF (LONG_MODE) // long-mode idt descriptors are 16 bytes long

temp offset = vector*16
ELSE // (LEGACY MODE) legacy-protected-mode idt descriptors are 8 bytes long
temp offset = vector*8

// read 8 bytes from the idt, split it into
// (segment,offset,attr), and save it in temp desc
temp desc = READ MEM.qg [idt:temp offset]

IF (temp desc.attr.dpl is illegal for the current mode/cpl)
// exception, with error code that indicates this IDT gate
EXCEPTION [#GP (vector*8+2)]

IF (temp_desc.attr.type is illegal for the current mode)
// exception, with error code that indicates this IDT gate
EXCEPTION [#GP (vector*8+2)]

IF (temp desc.attr.p==0)
// segment-not-present exception, with an error code that
// indicates this IDT gate
EXCEPTION [#NP (vector*8+2)]

RETURN (temp desc)

[I1177 7777777777777 777777777777 77
// READ INNER LEVEL_SP

// Read a new stack pointer (RSP or SS:ESP) from the TSS

[I1777 7777777777777 777777777777 77

usage:
temp SS desc:temp RSP = READ INNER LEVEL SP (new _cpl, ist index)

definition:

IF (LONG_MODE)
{
IF (ist_index>0)
temp RSP = READ MEM.q [tss:ist index*8+28] // read ISTn stack
// pointer from the TSS
ELSE // (ist_index==0)
temp RSP = READ MEM.q [tss:new cpl*8+4] // read RSPn stack
// pointer from the TSS

// in long mode, changing to lower cpl sets SS.sel to NULL+new cpl
temp SS desc.sel = NULL + new cpl

ELSE // (LEGACY_ MODE)
{

Instruction Overview 69

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021
temp RSP = READ MEM.d [tss:new cpl*8+4] // read ESPn from the TSS
temp sel = READ MEM.d [tss:new cpl*8+8] // read SSn from the TSS

temp SS desc = READ DESCRIPTOR (temp sel, ss chk)
}

return (temp RSP:temp SS desc)

L1177 77777777 7777777777 777
// READ BIT ARRAY // Read 1 bit from a bit array in memory

LITTT7 0077777770077 777 7077777777777 77770777777 7777777777777777777777777777777777

usage:
temp value = READ BIT ARRAY ([mem], bit_number)

definition:

temp BYTE = READ MEM.b [mem + (bit number SHR 3)]
// read the byte containing the bit

temp BIT = temp BYTE SHR (bit number & 7)
// shift the requested bit position into bit 0

return (temp BIT & 0x01) // return 0’ or "1’

[1777
// Shadow Stack Functions
[1777

define SSTK_ENABLED = (CR4.CET) && (CRO.PE) && (!EFLAGS.VM)
define SSTK USER_ENABLED = SSTK _ENABLED && (CPL==3) && (U _CET.SH STK EN)
define SSTK SUPV_ENABLED = SSTK ENABLED && (CPL <3) && (S_CET.SH STK EN)

bool ShadowStacksEnabled (privLevel)

IF (SSTK_ENABLED &&
((privLevel == 3) && U CET.SH STK EN) ||
((privLevel < 3) && S CET.SH STK EN))
RETURN (TRUE)

ELSE
RETURN (FALSE)

N o o o o NN
// SSTK READ MEM // read shadow stack memory

// Usage: temp = SSTK READ MEM.x [linear addr]

// where x is either d or g (4 or 8 bytes)

N o o o o N s

IF (PAGING_ENABLED) && (

(the linear address maps to a not-present page)

(the linear address maps to a non-shadow stack page)
(the access is user-mode &&

70 Instruction Overview

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

the linear address maps to a supervisor shadow stack page)
|| (the access is supervisor-mode &&
the linear address maps to a user shadow stack page))
EXCEPTION [PF(error code)] // page fault, with the SS (shadow stack) bit
// set in error code and the present and
// protection violation bits as appropriate
temp data.x = memory [linear addr].x
RETURN (temp data)

[111177
// SSTK_WRITE MEM // write shadow stack memory

// Usage: SSTK WRITE MEM.x [linear addr] = temp.x

// where x is either d or g (4 or 8 bytes)
[111177

IF (PAGING_ENABLED) && (

(the linear address maps to a not-present page)

(the linear address maps to a non-shadow stack page)

(the access is user-mode &&

the linear address maps to a supervisor shadow stack page)
|| (the access is supervisor-mode &&
the linear address maps to a user shadow stack page))
EXCEPTION [PF(error code)] // page fault, w/ the SS (shadow stack) bit

// set in error code and the present and
// protection violation bits as appropriate

memory [linear addr].x = temp.x

JIT170T7 7770777777777 7777 777777777777 777
// SET_SSTK_TOKEN BUSY (new SSP)

// Checks shadow stack token and if valid set the token's busy bit

// Usage: SET SSTK TOKEN BUSY (new_ SSP)

JIT17070 7770777777777 77777777 777

IF (new SSP[2:0] != 0) // new SSP must be 8-byte aligned
EXCEPTION [#GP(0)]

// check shadow stack token and set busy

bool FAULT = FALSE

< start atomic section >

temp Token = SSTK READ MEM.q [new SSP] // fetch token with locked read

IF ((!64-bit mode) && (temp token[63:32] != 0))
FAULT = TRUE // address in token must be <4GB
// in legacy/compatibility mode
IF ((temp Token AND 0x01) != 0)
FAULT = TRUE // token busy bit must be 0
IF ((temp Token AND ~0x01l) != new_ SSP)
FAULT = TRUE // address in token must match new SSP

IF (!FAULT)
temp Token = temp Token OR 0x0l1l // if no faults, set token busy bit
SSTK_WRITE MEM.q [new SSP] = temp Token // write token and unlock
< end atomic section >
IF (FAULT)

Instruction Overview 71

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

EXCEPTION [#GP (0)]

72 Instruction Overview

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

3 General-Purpose Instruction Reference

This chapter describes the function, mnemonic syntax, opcodes, affected flags, and possible
exceptions generated by the general-purpose instructions. General-purpose instructions are used in
basic software execution. Most of these instructions load, store, or operate on data located in the
general-purpose registers (GPRs), in memory, or in both. The remaining instructions are used to alter
the sequential flow of the program by branching to other locations within the program, or to entirely
different programs. With the exception of the MOVD, MOVMSKPD and MOVMSKPS instructions,
which operate on MMX/XMM registers, the instructions within the category of general-purpose
instructions do not operate on any other register set.

Most general-purpose instructions are supported in all hardware implementations of the AMD64
architecture. However, some instructions in this group are optional and support must be determined by
testing processor feature flags using the CPUID instruction. These instructions are listed in Table 3-1,
along with the CPUID function, register and bit used to test for the presence of the instruction.

Table 3-1. Instruction Support Indicated by CPUID Feature Bits

Instruction CPUID Function(s) Register[Bit] Feature Flag
ADCX, ADOX 0000_0007h (ECX=0) EBX[19] ADX
g;gﬁ";?ip“'a“o“ Instructions - 0000_0007h (ECX=0) EBX[3] BMI1
g;f)u'\"‘f‘gip“'ation Instructions - 0000_0007h (ECX=0) EBX[8] BMI2
CLFLOPT 0000_0007_0 EBX[23] CLFLOPT
CLWB 0000_0007h (ECX=0) EBX[24] CLWB
CLZERO 8000_0008h EBX[0] CLZERO
CMPXCHGSB 0000_0007h, 8000_00071h EDX[8] CMPXCHG8B
CMPXCHG16B 0000_0001h ECX[13] CMPXCHG16B
CMOVcc (Conditional Moves) 0000_0001h, 8000_0001h EDX[15] CMOoV
CLFLUSH 0000_0001h EDX[19] CLFSH
CRC32 0000_0001h ECX[20] SSE42
LAHF, SAHF 8000_0001h ECX[0] LahfSahf
LZCNT 8000_0001h ECX[5] ABM
Long Mode and Long Mode 8000_0001h EDX[29] LM
MCOMMIT 8000_0008h EBX[8] MCOMMIT
MFENCE, LFENCE 0000_0001h EDX[26] SSE2
MONITORX, MWAITX 8000_0001h ECX[29] MONITORX
MOVBE 0000_0001h ECX[22] MOVBE
General-Purpose 73

Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

Table 3-1. Instruction Support Indicated by CPUID Feature Bits (continued)

Instruction CPUID Function(s) Register[Bit] Feature Flag
0000_0001h, 8000_0001h EDX[23] MMX
MovD'
0000_0001h EDX[26] SSE2
MOVNTI 0000_0001h EDX[26] SSE2
POPCNT 0000_0001h ECX[23] POPCNT
ECX[8] 3DNowPrefetch
IZEEIEEE::E\;VZ 8000_0001h EDX[29] LM
EDX[31] 3DNow
\F,QV%FF%BBAASS'E NTAAry 0000_0007h (ECX=0) EBX[0] FSGSBASE
RDPRU 8000_0008h EBX[4] RDPRU
RDRAND 0000_0001h ECX[30] RDRAND
RDSEED 0000_0007h (ECX=0) EBX[18] RDSEED
RDPID 0000_0007h (ECX=0) ECX[22] RDPID
SFENCE 0000_0001h EDX[25] SSE
[raling Bit Manipulation 8000_0001h ECX[21] TBM
Notes:

1. The MOVD variant that moves values to or from MMX registers is part of the MMX subset; the MOVD variant that
moves data to or from XMM registers is part of the SSE2 subset.

2. Instruction is supported if any one of the listed feature flags is set.

For more information on using the CPUID instruction, see the reference page for the CPUID
instruction on page 160. For a comprehensive list of all instruction support feature flags, see
Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

The general-purpose instructions can be used in legacy mode or 64-bit long mode. Compilation of
general-purpose programs for execution in 64-bit long mode offers three primary advantages: access
to the eight extended, 64-bit general-purpose registers (for a register set consisting of GPRO—-GPR15),
access to the 64-bit virtual address space, and access to the RIP-relative addressing mode.

For further information about the general-purpose instructions and register resources, see:

e “General-Purpose Programming” in Volume 1.

e “Summary of Registers and Data Types” on page 38.
* “Notation” on page 52.

e “Instruction Prefixes” on page 5.

* Appendix B, “General-Purpose Instructions in 64-Bit Mode.” In particular, see “General Rules for
64-Bit Mode” on page 557.

74 General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

AAA ASCII Adjust After Addition

Adjusts the value in the AL register to an unpacked BCD value. Use the AAA instruction after using
the ADD instruction to add two unpacked BCD numbers.

The instruction is coded without explicit operands:
AAA

If the value in the lower nibble of AL is greater than 9 or the AF flag is set to 1, the instruction
increments the AH register, adds 6 to the AL register, and sets the CF and AF flags to 1. Otherwise, it
does not change the AH register and clears the CF and AF flags to 0. In either case, AAA clears bits
7:4 of the AL register, leaving the correct decimal digit in bits 3:0.

This instruction also makes it possible to add ASCII numbers without having to mask off the upper
nibble ‘3’.

MXCSR Flags Affected

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description

Create an unpacked BCD number.
AAA 37 (Invalid in 64-bit mode.)

Related Instructions

AAD, AAM, AAS

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
u U u M u M
21 120 | 19 | 18 | 17 | 16 | 14 13:12 1110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. Aflag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
g‘dg"d opcode, X This instruction was executed in 64-bit mode.
General-Purpose 75

Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

AAD ASCII Adjust Before Division

Converts two unpacked BCD digits in the AL (least significant) and AH (most significant) registers to
a single binary value in the AL register.

The instruction is coded without explicit operands:
AAD

The instruction performs the following operation on the contents of AL and AH using the formula:
AL = ((10d * AH) + (AL))

After the conversion, AH is cleared to 00h.

In most modern assemblers, the AAD instruction adjusts from base-10 values. However, by coding the
instruction directly in binary, it can adjust from any base specified by the immediate byte value (i)
suffixed onto the D5h opcode. For example, code D508h for octal, DSOA for decimal, and D50Ch for
duodecimal (base 12).

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description
Adjust two BCD digits in AL and AH.
AAD D5 0A (Invalid in 64-bit mode.)
: Adjust two BCD digits to the immediate byte base.
(None) D5 ib (Invalid in 64-bit mode.)

Related Instructions

AAA, AAM, AAS

rFLAGS Affected

ID |VIP| VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U M M u M U

21 120 | 19 | 18 | 17 | 16 | 14 13:12 1110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
g‘dg"d opcode, X This instruction was executed in 64-bit mode.
76 General-Purpose

Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

AAM ASCII Adjust After Multiply

Converts the value in the AL register from binary to two unpacked BCD digits in the AH (most
significant) and AL (least significant) registers.

The instruction is coded without explicit operands:

AAM

The instruction performs the following operation on the contents of AL and AH using the formula:
AH = (AL/10d)
AL = (AL mod 10d)

In most modern assemblers, the AAM instruction adjusts to base-10 values. However, by coding the
instruction directly in binary, it can adjust to any base specified by the immediate byte value (ib)
suffixed onto the D4h opcode. For example, code D408h for octal, D40Ah for decimal, and D40Ch for
duodecimal (base 12).

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description

D4 0A Create a pair of unpacked BCD values in AH and AL.

AAM (Invalid in 64-bit mode.)

Create a pair of unpacked values to the immediate byte
(None) D4 ib base.
(Invalid in 64-bit mode.)

Related Instructions

AAA, AAD, AAS

rFLAGS Affected
ID |VIP|VIF| AC | VM | RF | NT IOPL OF |[DF | IF | TF | SF | ZF | AF | PF | CF
U M M U M U
21 20 | 19 | 18 | 17 | 16 | 14 13:12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M. Unaffected flags are blank. Undefined
flags are U.
Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
Divide by zero, #DE | X X X 8-bit immediate value was 0.
m)’g“d opcode, X This instruction was executed in 64-bit mode.
General-Purpose 77

Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

AAS ASCII Adjust After Subtraction

Adjusts the value in the AL register to an unpacked BCD value. Use the AAS instruction after using
the SUB instruction to subtract two unpacked BCD numbers.

The instruction is coded without explicit operands:
AAS

If the value in AL is greater than 9 or the AF flag is set to 1, the instruction decrements the value in
AH, subtracts 6 from the AL register, and sets the CF and AF flags to 1. Otherwise, it clears the CF and
AF flags and the AH register is unchanged. In either case, the instruction clears bits 7:4 of the AL
register, leaving the correct decimal digit in bits 3:0.

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description

Create an unpacked BCD number from the contents of
AAS 3F the AL register.
(Invalid in 64-bit mode.)

Related Instructions

AAA, AAD,AAM

rFLAGS Affected

ID | VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
u u u M u M
21 1 20 | 19 | 18 | 17 | 16 | 14 13:12 1 110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual| Protecte
Exception Real| 8086 d Cause of Exception
;I;ngid opcode, X This instruction was executed in 64-bit mode.
78 General-Purpose

Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

ADC Add with Carry

Adds the carry flag (CF), the value in a register or memory location (first operand), and an immediate
value or the value in a register or memory location (second operand), and stores the result in the first
operand location.

The instruction has two operands:
ADC dest, src

The instruction cannot add two memory operands. The CF flag indicates a pending carry from a
previous addition operation. The instruction sign-extends an immediate value to the length of the
destination register or memory location.

This instruction evaluates the result for both signed and unsigned data types and sets the OF and CF
flags to indicate a carry in a signed or unsigned result, respectively. It sets the SF flag to indicate the
sign of a signed result.

Use the ADC instruction after an ADD instruction as part of a multibyte or multiword addition.

The forms of the ADC instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

Mnemonic Opcode Description
ADC AL, imm8 14 ib Add imm8 to AL + CF.
ADC AX, imm16 15 iw Add imm16 to AX + CF.
ADC EAX, imm32 15 id Add imm32 to EAX + CF.
ADC RAX, imm32 15id Add sign-extended imm32 to RAX + CF.
ADC reg/mem8, imm8 80/2ib Add imm8 to reg/mem8 + CF.
ADC reg/mem16, imm16 81/2 iw Add imm16 to reg/mem16 + CF.
ADC reg/mem32, imm32 81/2id Add imm32 to reg/mem32 + CF.
ADC reg/mem64, inm32 81/2id Add sign-extended imm32 to reg/mem64 + CF.
ADC reg/mem16, imm8 83/2ib Add sign-extended imm8 to reg/mem16 + CF.
ADC reg/mem32, imm8 83/2ib Add sign-extended imm8 to reg/mem32 + CF.
ADC reg/mem64, imm8 83/2ib Add sign-extended imm8 to reg/mem64 + CF.
ADC reg/mem8, reg8 10 /r Add reg8 to reg/mem8 + CF
ADC reg/mem16, reg16 11 /r Add reg16 to reg/mem16 + CF.
ADC reg/mem32, reg32 11 /r Add reg32 to reg/mem32 + CF.
ADC reg/mem64, reg64 11 /r Add reg64 to reg/mem64 + CF.
ADC reg8, reg/mem8 12 /r Add reg/mem8 to reg8 + CF.
ADC reg16, reg/mem16 13/ Add reg/mem16 to reg16 + CF.
General-Purpose 79

Instruction Reference

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021
Mnemonic Opcode Description

ADC reg32, reg/mem32 13/ Add reg/mem32 to reg32 + CF.

ADC reg64, reg/mem64 13/ Add reg/mem64 to reg64 + CF.

Related Instructions

ADD, SBB, SUB

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M M M M

21 | 20 | 19 | 18 | 17 | 16 | 14 13:12 1 110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #5S X X X non-canonical.
A memory address exceeded a data segment limit or was non-
X X X A
. canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
80 General-Purpose

Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

ADCX Unsigned ADD with Carry Flag

Adds the value in a register (first operand) with a register or memory (second operand) and the carry
flag, and stores the result in the first operand location. This instruction sets the CF based on the
unsigned addition. This instruction is useful in multi-precision addition algorithms.

This is an ADX instructions. Support for this instruction is indicated by CPUID
Fn0000 0007 EBX[ADX]=I.

Mnemonic Opcode Description
ADCX reg32, reg/mem32 66 OF 38 F6 /r Unsigned add with carryflag
ADCX reg64, reg/mem64 66 OF 38 F6 /r Unsigned add with carry flag.

Related Instructions
ADOX

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF

M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 1110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank.Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 [Protected Cause of Exception

A memory address exceeded the stack segment limit or

Stack, #55 X X X was non-canonical.

X X X A memory address exceeded a data segment limit or was

non-canonical.

General protection, #GP X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

A page fault resulted from the execution of the

Page fault, #PF X X instruction.

; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.
General-Purpose 81

Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

Virtual
Exception Real| 8086 [Protected Cause of Exception
X X X Instruction not supported by CPUID
X X Lock prefix (FOh) preceding opcode.

82

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

ADD Signed or Unsigned Add

Adds the value in a register or memory location (first operand) and an immediate value or the value in
a register or memory location (second operand), and stores the result in the first operand location.
The instruction has two operands:

ADD dest, src

The instruction cannot add two memory operands. The instruction sign-extends an immediate value to
the length of the destination register or memory operand.

This instruction evaluates the result for both signed and unsigned data types and sets the OF and CF
flags to indicate a carry in a signed or unsigned result, respectively. It sets the SF flag to indicate the
sign of a signed result.

The forms of the ADD instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

Mnemonic Opcode Description
ADD AL, imm8 04 ib Add imm8to AL.
ADD AX, imm16 05 iw Add imm16 to AX.
ADD EAX, imm32 05 id Add imm32 to EAX.
ADD RAX, imm32 05id Add sign-extended imm32 to RAX.
ADD reg/mem8, imm8 80/0ib Add imm8 to reg/memS.
ADD reg/mem16, imm16 81 /0 iw Add imm16 to reg/mem16
ADD reg/mem32, imm32 81/0id Add imm32 to reg/mem32.
ADD reg/mem64, imm32 81/0id Add sign-extended imm32 to reg/mem64.
ADD reg/mem16, imm8 83/0ib Add sign-extended imm8 to reg/mem16
ADD reg/mem32, imm8 83/0ib Add sign-extended imm8 to reg/mem32.
ADD reg/mem64, imm8 83/0ib Add sign-extended imm8 to reg/mem64.
ADD reg/mem8, reg8 00 /r Add reg8 to reg/mema8.
ADD reg/mem16, reg16 01 /r Add reg16 to reg/mem16.
ADD reg/mem32, reg32 01 /r Add reg32 to reg/mem32.
ADD reg/mem64, reg64 01/r Add reg64 to reg/mem64.
ADD reg8, reg/mem8 02 /r Add reg/mem8 to reg8.
ADD reg16, reg/mem16 03 /r Add reg/mem16 to reg16.
ADD reg32, reg/mem32 03 /r Add reg/mem32 to reg32.
ADD reg64, reg/mem64 03 /r Add reg/mem64 to reg64.
General-Purpose 83

Instruction Reference

AMDZU

AMDG64 Technology

Related Instructions

24594—Rev. 3.32—March 2021

ADC, SBB, SUB

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M| M| M| M| M

21 | 20| 19 | 18 | 17 | 16 | 14 13:12 11 |10 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception

A memory address exceeded the stack segment limit or was
Stack, #5S X X non-canonical.

A memory address exceeded a data segment limit or was non-

X X :
. canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.

84

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

ADOX Unsigned ADD with Overflow Flag

Adds the value in a register (first operand) with a register or memory (second operand) and the
overflow flag, and stores the result in the first operand location. This instruction sets the OF based on
the unsigned addition and whether there is a carry out. This instruction is useful in multi-precision
addition algorithms.

This is an ADX instructions. Support for this instruction is indicated by CPUID
Fn0000 0007 EBX[ADX]=I.

Mnemonic Opcode Description
ADOX reg32, reg/mem32 F3 OF 38 F6 /r Unsigned add with overflow flag
ADOX reg64, reg/mem64 F3 OF 38 F6 /r Unsigned add with overflow flag.

Related Instructions
ADCX

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 1110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank.Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 [Protected Cause of Exception

A memory address exceeded the stack segment limit or

Stack, #5S X X X was non-canonical.

X X X A memory address exceeded a data segment limit or was

non-canonical.

General protection, #GP X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

A page fault resulted from the execution of the

Page fault, #PF X X instruction.

: An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.
General-Purpose 85

Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

Virtual
Exception Real| 8086 [Protected Cause of Exception
X X X Instruction not supported by CPUID
X X Lock prefix (FOh) preceding opcode.

86

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

AND Logical AND

Performs a bit-wise logical and operation on the value in a register or memory location (first operand)
and an immediate value or the value in a register or memory location (second operand), and stores the
result in the first operand location. Both operands cannot be memory locations.
The instruction has two operands:

AND dest, src

The instruction sets each bit of the result to 1 if the corresponding bit of both operands is set;
otherwise, it clears the bit to 0. The following table shows the truth table for the logical and operation:

X Y XandyY
0 0
0 1 0
1 0 0
1 1 1

The forms of the AND instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

Mnemonic Opcode Description

AND AL imm8 24 ib and the contents of AL with an immediate 8-bit value and store
’ the result in AL.

AND AX imm16 25 jw and the contents of AX with an immediate 16-bit value and store
’ the result in AX.

AND EAX imm32 25 id and the contents of EAX with an immediate 32-bit value and
’ store the result in EAX.

AND RAX. imm32 25 id and the contents of RAX with a sign-extended immediate 32-bit
’ value and store the result in RAX.

AND reg/mem8, imm8 80 /4 ib and the contents of reg/mem8 with imm8.

AND reg/mem16, imm16 81 /4 iw and the contents of reg/mem16 with imm16.

AND reg/mem32, imm32 81 /4 id and the contents of reg/mem32 with imm32.

AND reg/mem64, imm32 81 /4 id and the contents of reg/mem64 with sign-extended imm32.

AND reg/mem16, imm8 83 /4 ib and the contents of reg/mem16 with a sign-extended 8-bit value.

AND reg/mem32, imm8 83 /4 ib and the contents of reg/mem32 with a sign-extended 8-bit value.

AND reg/mem64, imm8 83 /4 ib and the contents of reg/mem64 with a sign-extended 8-bit value.
General-Purpose 87

Instruction Reference

AMDZU

AMDG64 Technology

Mnemonic

AND reg/mem8, reg8

AND reg/mem16, reg16
AND reg/mem32, reg32
AND reg/mem64, reg64
AND reg8, reg/mem8

AND reg16, reg/mem16
AND reg32, reg/mem32

AND reg64, reg/mem64

Related Instructions

Opcode

20 /r

21 /r

21 /r

21 /r

22 /r

23 /r

23 /r

23 /r

TEST, OR, NOT, NEG, XOR

24594—Rev. 3.32—March 2021

Description

and the contents of an 8-bit register or memory location with the
contents of an 8-bit register.

and the contents of a 16-bit register or memory location with the
contents of a 16-bit register.

and the contents of a 32-bit register or memory location with the
contents of a 32-bit register.

and the contents of a 64-bit register or memory location with the
contents of a 64-bit register.

and the contents of an 8-bit register with the contents of an 8-bit
memory location or register.

and the contents of a 16-bit register with the contents of a 16-bit
memory location or register.

and the contents of a 32-bit register with the contents of a 32-bit
memory location or register.

and the contents of a 64-bit register with the contents of a 64-bit
memory location or register.

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U|M|[O

21 | 20 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 |7 |6 |4 |20

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception

A memory address exceeded the stack segment limit or was

Stack, #55 X X X non-canonix‘cal.
A memory address exceeded a data segment limit or was non-

X X X A
. canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.

88

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

ANDN Logical And-Not

Performs a bit-wise logical and of the second source operand and the one's complement of the first
source operand and stores the result into the destination operand.

This instruction has three operands:
ANDN dest, src1, src2

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination operand (desf) is always a general purpose register.

The first source operand (src/) is a general purpose register and the second source operand (src?2) is
either a general purpose register or a memory operand.

This instruction implements the following operation:

not tmp, srcl
and dest, tmp, src2

The flags are set according to the result of the and pseudo-operation.

The ANDN instruction is a BMII instruction. Support for this instruction is indicated by CPUID
Fn0000 0007 _EBX x0[BMI1]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
ANDN reg32, reg32, reg/mem32 C4 RXB.02 0.src1.0.00 F2/r
ANDN reg64, reg64, reg/mem64 C4 RXB.02 1.src1.0.00 F2/r

Related Instructions

BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose 89
Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U|U/|O

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Exception Real Virtual Protected Cause of Exception
80806
X X BMI instructions are only recognized in protected mode.
. BMI instructions are not supported as indicated by
Invalid opcode, #UD X | CPUID Fn0000_0007_EBX_x0[BMI] = O.
X VEX.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #55 X was non-canonical.
i X A memory address exceeded a data segment limit or
General protection, was non-canonical.
#GP
A null data segment was used to reference memory.
Page fault, #PF X ﬁ&?ﬁfﬁ?ﬁlt resulted from the execution of the
Alignment check, #AC X An unaligned memory reference was performed while

alignment checking was enabled.

90

General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
BEXTR Bit Field Extract
(register form)

Extracts a contiguous field of bits from the first source operand, as specified by the control field setting
in the second source operand and puts the extracted field into the least significant bit positions of the
destination. The remaining bits in the destination register are cleared to 0.

This instruction has three operands:
BEXTR dest, src, cntl

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is a general purpose register.
The source operand (src) is either a general purpose register or a memory operand.

The control (cntl) operand is a general purpose register that provides two fields describing the range of
bits to extract:

* Isb_index (in bits 7:0)—specifies the index of the least significant bit of the field
* length (in bits 15:8)—specifies the number of bits in the field.

The position of the extracted field can be expressed as:
[Isb_index + length — 1] : [Isb_index]

For example, if the Ish_index is 7 and length is 5, then bits 11:7 of the source will be copied to bits 4:0
of the destination, with the rest of the destination being zero-filled. Zeros are provided for any bit
positions in the specified range that lie beyond the most significant bit of the source operand. A length
value of zero results in all zeros being written to the destination.

This form of the BEXTR instruction is a BMI1 instruction. Support for this instruction is indicated by
CPUID Fn0000_0007_EBX x0[BMI1]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

BEXTR reg32, reg/mem32, reg32 C4 RXB.02 0.cntl.0.00 F7 Ir
BEXTR reg64, reg/mem64, req64 C4 RXB.02 1.cntl.0.00 F7 Ir
General-Purpose 91

Instruction Reference

AMDZU

AMDG64 Technology

Related Instructions

ANDN, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

24594—Rev. 3.32—March 2021

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL | OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 U M U U 0

21 | 20 | 19 | 18 | 17 | 16 | 14 13:12 M|10| 9| 8 |7 |6 |4 |20

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. Aflag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Mode
Exception Virtual Cause of Exception
Real| 8086 [Protected
X X BMI instructions are only recognized in protected mode.
. BMI instructions are not supported, as indicated by
Invalid opcode, #UD CPUID Fn0000_0007_EBX_xO[BMI] = 0.
X VEX.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #5S X was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
. An unaligned memory reference was performed while
Alignment check, #AC X alignment checking was enabled.

92

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

BEXTR Bit Field Extract
(immediate form)

Extracts a contiguous field of bits from the first source operand, as specified by the control field setting
in the second source operand and puts the extracted field into the least significant bit positions of the
destination. The remaining bits in the destination register are cleared to 0.

This instruction has three operands:
BEXTR dest, src, cntl

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.
The source operand (src) is either a general purpose register or a memory operand.

The control (cntl) operand is a 32-bit immediate value that provides two fields describing the range of
bits to extract:

* Isb_index (in immediate operand bits 7:0)—specifies the index of the least significant bit of the
field

* length (in immediate operand bits 15:8)—specifies the number of bits in the field.
The position of the extracted field can be expressed as:
[Isb_index + length — 1] : [Isb_index]

For example, if the Isb_index is 7 and length is 5, then bits 11:7 of the source will be copied to bits 4:0
of the destination, with the rest of the destination being zero-filled. Zeros are provided for any bit
positions in the specified range that lie beyond the most significant bit of the source operand. A length
value of zero results in all zeros being written to the destination.

This form of the BEXTR instruction is a TBM instruction. Support for this instruction is indicated by
CPUID Fn8000 0001 ECX[TBM] =1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

BEXTR reg32, reg/mem32, imm32 8F RXB.0A 0.1111.0.00 10 /r/id
BEXTR reg64, reg/mem64, imm32 8F RXB.0A 1.1111.0.00 10 /r/id
General-Purpose 93

Instruction Reference

AMDZU

AMDG64 Technology

Related Instructions

ANDN, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

24594—Rev. 3.32—March 2021

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL | OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 U M U U 0

21 | 20 | 19 | 18 | 17 | 16 | 14 13:12 M|10| 9| 8 |7 |6 |4 |20

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. Aflag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
X X TBM instructions are only recognized in protected mode.
: TBM instructions are not supported, as indicated by
Invalid opcode, #UD X | CPUID Fn8000_0001_ECX[TBM] = 0.
X XOP.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #5S X was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
; An unaligned memory reference was performed while
Alignment check, #AC X alignment checking was enabled.

94

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

BLCFILL Fill From Lowest Clear Bit

Finds the least significant zero bit in the source operand, clears all bits below that bit to 0 and writes
the result to the destination. If there is no zero bit in the source operand, the destination is written with
all zeros.
This instruction has two operands:

BLCFILL dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.
The source operand (src) is a general purpose register or a memory operand.

The BLCFILL instruction effectively performs a bit-wise logical and of the source operand and the
result of incrementing the source operand by 1 and stores the result to the destination register:

add tmp, src, 1
and dest, tmp, src

The value of the carry flag of rTFLAGS is generated according to the result of the add pseudo-
instruction and the remaining arithmetic flags are generated by the and pseudo-instruction.

The BLCFILL instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000 0001 ECX[TBM]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode
BLCFILL reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /1
BLCFILL reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /1

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF,
BSR, LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose 95
Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U/|U/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions

Exception

Real

Virtual

8086 [Protected

Cause of Exception

TBM instructions are only recognized in protected mode.

TBM instructions are not supported, as indicated by

Invalid opcode, #UD X' | CPUID Fn8000_0001_ECX[TBM] = 0.
XOP.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #55 X was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while

alignment checking was enabled.

96

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

BLCI Isolate Lowest Clear Bit

Finds the least significant zero bit in the source operand, sets all other bits to 1 and writes the result to
the destination. If there is no zero bit in the source operand, the destination is written with all ones.
This instruction has two operands:

BLCI dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.
The source operand (s7c) is a general purpose register or a memory operand.

The BLCI instruction effectively performs a bit-wise logical or of the source operand and the inverse
of the result of incrementing the source operand by 1, and stores the result to the destination register:

add tmp, src, 1
not tmp, tmp
or dest, tmp, src

The value of the carry flag of tTFLAGS is generated according to the result of the add pseudo-
instruction and the remaining arithmetic flags are generated by the or pseudo-instruction.

The BLCI instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000 0001 ECX[TBM]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode
BLCI reg32, reg/mem32 8F RXB.09 0.dest.0.00 02 /6
BLCI reg64, reg/mem64 8F RXB.09 1.dest.0.00 02 /6

Related Instructions

ANDN, BEXTR, BLCFILL, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK,
BSF, BSR, LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose 97
Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U/|U/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions

Exception

Real

Virtual

8086 [Protected

Cause of Exception

TBM instructions are only recognized in protected mode.

TBM instructions are not supported, as indicated by

Invalid opcode, #UD X' | CPUID Fn8000_0001_ECX[TBM] = 0.
XOP.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #55 X was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while

alignment checking was enabled.

98

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

BLCIC Isolate Lowest Clear Bit and Complement

Finds the least significant zero bit in the source operand, sets that bit to 1, clears all other bits to 0 and
writes the result to the destination. If there is no zero bit in the source operand, the destination is
written with all zeros.

This instruction has two operands:
BLCIC dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.
The source operand (src) is a general purpose register or a memory operand.

The BLCIC instruction effectively performs a bit-wise logical and of the negation of the source
operand and the result of incrementing the source operand by 1, and stores the result to the destination
register:

add tmpl, src, 1
not tmp2, src
and dest, tmpl,tmp2

The value of the carry flag of rFLAGS is generated according to the result of the add pseudo-
instruction and the remaining arithmetic flags are generated by the and pseudo-instruction.

The BLCIC instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000 0001 ECX[TBM]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode
BLCIC reg32, reg/mem32 8F RXB.09 0.dest.0.00 01/5
BLCIC reg64, reg/mem64 8F RXB.09 1.dest.0.00 01/5

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK,
BSF, BSR, LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose 99
Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U/|U/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions

Exception

Real

Virtual

8086 [Protected

Cause of Exception

TBM instructions are only recognized in protected mode.

TBM instructions are not supported, as indicated by

Invalid opcode, #UD X' | CPUID Fn8000_0001_ECX[TBM] = 0.
XOP.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #55 X was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while

alignment checking was enabled.

100

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

BLCMSK Mask From Lowest Clear Bit

Finds the least significant zero bit in the source operand, sets that bit to 1, clears all bits above that bit
to 0 and writes the result to the destination. If there is no zero bit in the source operand, the destination
is written with all ones.

This instruction has two operands:
BLCMSK dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.
The source operand (src) is a general purpose register or a memory operand.

The BLCMSK instruction effectively performs a bit-wise logical xor of the source operand and the
result of incrementing the source operand by 1 and stores the result to the destination register:

add tmpl, src, 1
xor dest, tmpl,src

The value of the carry flag of rTFLAGS is generated according to the result of the add pseudo-
instruction and the remaining arithmetic flags are generated by the xor pseudo-instruction.

If the input is all ones, the output is a value with all bits set to 1.

The BLCMSK instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000 0001 ECX[TBM]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Instruction Encoding

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode
BLCMSK reg32, reg/mem32 8F RXB.09 0.dest.0.00 021
BLCMSK reg64, reg/mem64 8F RXB.09 1.dest.0.00 02 /1

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose 101
Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U/|U/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions

Exception

Real

Virtual

8086 [Protected

Cause of Exception

TBM instructions are only recognized in protected mode.

TBM instructions are not supported, as indicated by

Invalid opcode, #UD X' | CPUID Fn8000_0001_ECX[TBM] = 0.
XOP.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #55 X was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while

alignment checking was enabled.

102

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

BLCS Set Lowest Clear Bit

Finds the least significant zero bit in the source operand, sets that bit to 1 and writes the result to the
destination. If there is no zero bit in the source operand, the source is copied to the destination (and CF
inrTFLAGS is setto 1).

This instruction has two operands:
BLCS dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.
The source operand (src) is a general purpose register or a memory operand.

The BLCS instruction effectively performs a bit-wise logical or of the source operand and the result
of incrementing the source operand by 1, and stores the result to the destination register:

add tmp, src, 1
or dest, tmp, src

The value of the carry flag of rfFLAGS is generated by the add pseudo-instruction and the remaining
arithmetic flags are generated by the or pseudo-instruction.

The BLCS instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000 0001 ECX[TBM]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode
BLCS reg32, reg/mem32 8F RXB.09 0.dest.0.00 01/3
BLCS reg64, reg/mem64 8F RXB.09 1.dest.0.00 01/3

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCIC, BLCMSK, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK,
BSF, BSR, LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose 103
Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U/|U/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions

Exception

Real

Virtual

8086 [Protected

Cause of Exception

TBM instructions are only recognized in protected mode.

TBM instructions are not supported, as indicated by

Invalid opcode, #UD X' | CPUID Fn8000_0001_ECX[TBM] = 0.
XOP.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #55 X was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while

alignment checking was enabled.

104

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

BLSFILL Fill From Lowest Set Bit

Finds the least significant one bit in the source operand, sets all bits below that bit to 1 and writes the
result to the destination. If there is no one bit in the source operand, the destination is written with all
ones.
This instruction has two operands:

BLSFILL dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.
The source operand (src) is a general purpose register or a memory operand.

The BLSFILL instruction effectively performs a bit-wise logical or of the source operand and the
result of subtracting 1 from the source operand, and stores the result to the destination register:

sub tmp, src, 1
or dest, tmp, src

The value of the carry flag of rTFLAGs is generated by the sub pseudo-instruction and the remaining
arithmetic flags are generated by the or pseudo-instruction.

The BLSFILL instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000 0001 ECX[TBM]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode
BLSFILL reg32, reg/mem32 8F RXB.09 0.dest.0.00 01/2
BLSFILL reg64, reg/mem64 8F RXB.09 1.dest.0.00 017/2

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCIC, BLCMSK, BLCS, BLSI, BLSIC, BLSR, BLSMSK, BSF,
BSR, LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose 105
Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U/|U/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions

Exception

Real

Virtual

8086 [Protected

Cause of Exception

TBM instructions are only recognized in protected mode.

TBM instructions are not supported, as indicated by

Invalid opcode, #UD X' | CPUID Fn8000_0001_ECX[TBM] = 0.
XOP.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #55 X was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while

alignment checking was enabled.

106

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

BLSI Isolate Lowest Set Bit

Clears all bits in the source operand except for the least significant bit that is set to 1 and writes the
result to the destination. If the source is all zeros, the destination is written with all zeros.

This instruction has two operands:
BLSI dest, src

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is a general purpose register.
The source operand (src) is either a general purpose register or a bit memory operand.

This instruction implements the following operation:

neg tmp, srcl
and dst, tmp, srcl

The value of the carry flag is generated by the neg pseudo-instruction and the remaining status flags
are generated by the and pseudo-instruction.

The BLSI instruction is a BMI1 instruction. Support for this instruction is indicated by CPUID
Fn0000 0007 EBX x0[BMI1]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
BLSI reg32, reg/mem32 C4 RXB.02 0.dest.0.00 F3/3
BLSI reg64, reg/mem64 C4 RXB.02 1.dest.0.00 F3/3

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose 107
Instruction Reference

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected
ID [VIP | VIF| AC|VM | RF | NT| IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M M 0] U M

21 1 20 | 19 | 18 | 17 | 16 | 14 13:12 1 110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. Aflag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Mode
Exception Virtual Cause of Exception
Real| 8086 |Protected
X X BMI instructions are only recognized in protected mode.
. BMI instructions are not supported, as indicated by
Invalid opcode, #UD X | CPUID Fn0000_0007 _EBX_xO[BMI] = 0.
VEX.Lis 1.
Stack, #SS A memory address exceeded the stack segment limit or

was non-canonical.

A memory address exceeded a data segment limit or was

General protection, #GP non-canonical.
A null data segment was used to reference memory.

A page fault resulted from the execution of the

Page fault, #PF instruction.

An unaligned memory reference was performed while
alignment checking was enabled.

Alignment check, #AC X

108 General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

BLSIC Isolate Lowest Set Bit and Complement

Finds the least significant bit that is set to 1 in the source operand, clears that bit to 0, sets all other bits
to 1 and writes the result to the destination. If there is no one bit in the source operand, the destination
is written with all ones.
This instruction has two operands:

BLSIC dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.
The source operand (src) is a general purpose register or a memory operand.

The BLSIC instruction effectively performs a bit-wise logical or of the inverse of the source operand
and the result of subtracting 1 from the source operand, and stores the result to the destination register:

sub tmpl, src, 1
not tmp2, src
or dest, tmpl, tmp2

The value of the carry flag of rfFLAGS is generated by the sub pseudo-instruction and the remaining
arithmetic flags are generated by the or pseudo-instruction.

The BLSR instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000 0001 ECX[TBM]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode
BLSIC reg32, reg/mem32 8F RXB.09 0.dest.0.00 01/6
BLSIC reg64, reg/mem64 8F RXB.09 1.dest.0.00 01/6

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR,
BLSMSK, BSF, BSR, LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose 109
Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U/|U/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions

Exception

Real

Virtual

8086 [Protected

Cause of Exception

TBM instructions are only recognized in protected mode.

TBM instructions are not supported, as indicated by

Invalid opcode, #UD X | CPUID Fn8000_0001_ECX[TBM] = 0.
XOP.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #55 X was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while

alignment checking was enabled.

110

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

BLSMSK Mask From Lowest Set Bit

Forms a mask with bits set to 1 from bit 0 up to and including the least significant bit position that is set
to 1 in the source operand and writes the mask to the destination. If the value of the source operand is
zero, the destination is written with all ones.

This instruction has two operands:
BLSMSK dest, src

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is always a general purpose register.

The source operand (src) is either a general purpose register or a memory operand and the destination
operand (dest) is a general purpose register.

This instruction implements the operation:

sub tmp, srcl, 1
xor dst, tmp, srcl

The value of the carry flag is generated by the sub pseudo-instruction and the remaining status flags
are generated by the xor pseudo-instruction.

If the input is zero, the output is a value with all bits set to 1. If this is considered a corner case input,
software may test the carry flag to detect the zero input value.

The BLSMSK instruction is a BMI1 instruction. Support for this instruction is indicated by CPUID
Fn0000 0007 EBX x0[BMI1]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
BLSMSK reg32, reg/mem32 C4 RXB.02 0.dest.0.00 F3/2
BLSMSK reg64, reg/mem64 C4 RXB.02 1.dest.0.00 F3/2

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BSF, BSR,
LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose 111
Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U/|U/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. Aflag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Mode
Exception Virtual Cause of Exception
Real| 8086 |Protected
X X BMI instructions are only recognized in protected mode.
. BMI instructions are not supported, as indicated by
Invalid opcode, #UD X | CPUID Fn0000_0007 EBX_xO[BMI] = 0.
X VEX.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #55 was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
; An unaligned memory reference was performed while
Alignment check, #AC X alignment checking was enabled.

112

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

BLSR Reset Lowest Set Bit

Clears the least-significant bit that is set to 1 in the input operand and writes the modified operand to
the destination.

This instruction has two operands:
BLSR dest, src

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is always a general purpose register.
The source operand (s7c) is either a general purpose register or a memory operand.

This instruction implements the operation:

sub tmp, srcl, 1
and dst, tmp, srcl

The value of the carry flag is generated by the sub pseudo-instruction and the remaining status flags
are generated by the and pseudo-instruction.

The BLSR instruction is a BMI1 instruction. Support for this instruction is indicated by CPUID
Fn0000 0007 _EBX x0[BMI1]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
BLSR reg32, reg/mem32 C4 RXB.02 0.dest.0.00 F3/1
BLSR reg64, reg/mem64 C4 RXB.02 1.dest.0.00 F3/1

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSMSK, BSF, BSR,
LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose 113
Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U/|U/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. Aflag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Mode
Exception Virtual Cause of Exception
Real| 8086 |Protected
X X BMI instructions are only recognized in protected mode.
. BMI instructions are not supported, as indicated by
Invalid opcode, #UD X | CPUID Fn0000_0007 EBX_xO[BMI] = 0.
X VEX.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #55 was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
; An unaligned memory reference was performed while
Alignment check, #AC X alignment checking was enabled.

114

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

BOUND Check Array Bound

Checks whether an array index (first operand) is within the bounds of an array (second operand). The
array index is a signed integer in the specified register. If the operand-size attribute is 16, the array
operand is a memory location containing a pair of signed word-integers; if the operand-size attribute is
32, the array operand is a pair of signed doubleword-integers. The first word or doubleword specifies
the lower bound of the array and the second word or doubleword specifies the upper bound.

The array index must be greater than or equal to the lower bound and less than or equal to the upper
bound. If the index is not within the specified bounds, the processor generates a BOUND range-
exceeded exception (#BR).

The bounds of an array, consisting of two words or doublewords containing the lower and upper limits
of the array, usually reside in a data structure just before the array itself, making the limits addressable
through a constant offset from the beginning of the array. With the address of the array in a register,
this practice reduces the number of bus cycles required to determine the effective address of the array
bounds.

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description

Test whether a 16-bit array index is within the bounds
BOUND reg16, mem16&mem16 62 /r specified by the two 16-bit values in mem16&mem16.
(Invalid in 64-bit mode.)

Test whether a 32-bit array index is within the bounds
BOUND reg32, mem32&mem32 62 /r specified by the two 32-bit values in mem32&mem32.
(Invalid in 64-bit mode.)

Related Instructions

INT, INT3, INTO

rFLAGS Affected
None
Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
Bound range, #BR X X X The bound range was exceeded.
Invalid opcode, X X X The source operand was a register.
#UD X Instruction was executed in 64-bit mode.
Stack, #SS X X X A memory address exceeded the stack segment limit
General protection, | X X X A memory address exceeded a data segment limit.
#GP X A null data segment was used to reference memory.
General-Purpose 115

Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

#AC

Virtual
Exception Real| 8086 |Protected Cause of Exception
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while

alignment checking was enabled.

116

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

BSF Bit Scan Forward

Searches the value in a register or a memory location (second operand) for the least-significant set bit.
If a set bit is found, the instruction clears the zero flag (ZF) and stores the index of the least-significant
set bit in a destination register (first operand). If the second operand contains 0, the instruction sets ZF
to 1 and does not change the contents of the destination register. The bit index is an unsigned offset
from bit 0 of the searched value.

Mnemonic Opcode Description
BSF reg16, reg/mem16 OF BC/r Bit scan forward on the contents of reg/mem16.
BSF reg32, reg/mem32 OF BC/r Bit scan forward on the contents of reg/mem32.
BSF reg64, reg/mem64 OF BC/r Bit scan forward on the contents of reg/mem64

Related Instructions

BSR

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF

u u M u U u

21 120 |19 | 18 | 17 | 16 | 14 13:12 11110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #5S X X X non-canonical.
. X X X A memory address exceeded a data segment limit or was non-
General protection, canonical.
#GP
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.
General-Purpose 117

Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

BSR Bit Scan Reverse

Searches the value in a register or a memory location (second operand) for the most-significant set bit.
If a set bit is found, the instruction clears the zero flag (ZF) and stores the index of the most-significant
set bit in a destination register (first operand). If the second operand contains 0, the instruction sets ZF
to 1 and does not change the contents of the destination register. The bit index is an unsigned offset
from bit 0 of the searched value.

Mnemonic Opcode Description
BSR reg16, reg/mem16 OF BD /r Bit scan reverse on the contents of reg/mem16.
BSR reg32, reg/mem32 OF BD /r Bit scan reverse on the contents of reg/mem32.
BSR reg64, reg/mem64 OF BD /r Bit scan reverse on the contents of reg/mem64.

Related Instructions

BSF
rFLAGS Affected
ID |VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U U M U U U
21 120 | 19 | 18 | 17 | 16 | 14 13:12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.
Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #5S X X X non-canonical.
. X X X A memory address exceeded the data segment limit or was
General protection, non-canonical.
#GP
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.
118 General-Purpose

Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

BSWAP Byte Swap

Reverses the byte order of the specified register. This action converts the contents of the register from
little endian to big endian or vice versa. In a doubleword, bits 7:0 are exchanged with bits 31:24, and
bits 15:8 are exchanged with bits 23:16. In a quadword, bits 7:0 are exchanged with bits 63:56, bits
15:8 with bits 55:48, bits 23:16 with bits 47:40, and bits 31:24 with bits 39:32. A subsequent use of the
BSWAP instruction with the same operand restores the original value of the operand.

The result of applying the BSWAP instruction to a 16-bit register is undefined. To swap the bytes of a
16-bit register, use the XCHG instruction and specify the respective byte halves of the 16-bit register
as the two operands. For example, to swap the bytes of AX, use XCHG AL, AH.

Mnemonic Opcode Description
BSWAP reg32 OF C8 +rd Reverse the byte order of reg32.
BSWAP reg64 OF C8 +rq Reverse the byte order of reg64.

Related Instructions

XCHG

rFLAGS Affected

None

Exceptions

None

General-Purpose 119
Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

BT Bit Test

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second operand), from a bit
string (first operand), also called the bit base, to the carry flag (CF) of the rFLAGS register.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64 (depending on the
operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address is the bit base of
the bit string. If the bit index is in a register, the instruction selects a bit position relative to the bit base
in the range 20316 +203 _ [if the operand size is 64, 23140 +231 1, if the operand size is 32, and
25 to +215 — 1 if the operand size is 16. If the bit index is in an immediate value, the bit selected is
that value modulo 16, 32, or 64, depending on operand size.

When the instruction attempts to copy a bit from memory, it accesses 2, 4, or 8 bytes starting from the
specified memory address for 16-bit, 32-bit, or 64-bit operand sizes, respectively, using the following
formula:

Effective Address + (NumBytes; * (BitOffset DIV NumBits;«g))

When using this bit addressing mechanism, avoid referencing areas of memory close to address space
holes, such as references to memory-mapped I/O registers. Instead, use a MOV instruction to load a
register from such an address and use a register form of the BT instruction to manipulate the data.

Mnemonic Opcode Description
BT reg/mem16, reg16 OF A3 /r Copy the value of the selected bit to the carry flag.
BT reg/mem32, reg32 OF A3 /r Copy the value of the selected bit to the carry flag.
BT reg/mem64, reg64 OF A3 /r Copy the value of the selected bit to the carry flag.
BT reg/mem16, imm8 OF BA/4 ib Copy the value of the selected bit to the carry flag.
BT reg/mem32, imm8 OF BA/4 ib Copy the value of the selected bit to the carry flag.
BT reg/memé64, imm8 OF BA/4 ib Copy the value of the selected bit to the carry flag.

Related Instructions

BTC, BTR, BTS

120 General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

AMDG64 Technology

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
u Ul U]|]U|U]/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #5S X X non-canonical.
. X X A memory address exceeded a data segment limit or was non-
General protection, canonical.
#GP
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.

General-Purpose

Instruction Reference

121

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

BTC Bit Test and Complement

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second operand), from a bit
string (first operand), also called the bit base, to the carry flag (CF) of the rFLAGS register, and then
complements (toggles) the bit in the bit string.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64 (depending on the
operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address is the bit base of
the bit string. If the bit index is in a register, the instruction selects a bit position relative to the bit base
in the range 263 10 +293 _ 1 if the operand size is 64, 23 t0+231 -1, if the operand size is 32, and
23 t0 +215 — 1 if the operand size is 16. If the bit index is in an immediate value, the bit selected is
that value modulo 16, 32, or 64, depending the operand size.

This instruction is useful for implementing semaphores in concurrent operating systems. Such an
application should precede this instruction with the LOCK prefix. For details about the LOCK prefix,
see “Lock Prefix” on page 11.

Mnemonic Opcode Description

Copy the value of the selected bit to the carry flag, then

BTC reg/mem16, reg16 OF BB /r complement the selected bit.

OF BB /r Copy the value of the selected bit to the carry flag, then

BTC reg/mem32, reg32 complement the selected bit.

OF BB /r Copy the value of the selected bit to the carry flag, then

BTC reg/mem64, reg64 complement the selected bit.

OF BA/7 ib Copy the value of the selected bit to the carry flag, then

BTC reg/mem16, imm3 complement the selected bit.

OF BA /7 ib Copy the value of the selected bit to the carry flag, then

BTC reg/mem32, imm8 complement the selected bit.

OF BA/7 ib Copy the value of the selected bit to the carry flag, then

BTC reg/mem64, imm8 complement the selected bit.

Related Instructions

BT, BTR, BTS

122 General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

AMDG64 Technology

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
u Ul U]|]U|U]/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #5S X X non-canonical.
A memory address exceeded a data segment limit or was non-
X X i
. canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.

General-Purpose
Instruction Reference

123

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

BTR Bit Test and Reset

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second operand), from a bit
string (first operand), also called the bit base, to the carry flag (CF) of the rFLAGS register, and then
clears the bit in the bit string to 0.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64 (depending on the
operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address is the bit base of
the bit string. If the bit index is in a register, the instruction selects a bit position relative to the bit base
in the range 263 10 +293 _ 1 if the operand size is 64, 23 t0+231 -1, if the operand size is 32, and
23 t0 +215 — 1 if the operand size is 16. If the bit index is in an immediate value, the bit selected is
that value modulo 16, 32, or 64, depending on the operand size.

This instruction is useful for implementing semaphores in concurrent operating systems. Such
applications should precede this instruction with the LOCK prefix. For details about the LOCK prefix,
see “Lock Prefix” on page 11.

Mnemonic Opcode Description

Copy the value of the selected bit to the carry flag, then

BTR reg/mem16, reg16 OF B3 /r clear the selected bit.
Copy the value of the selected bit to the carry flag, then
BTR reg/mem32, reg32 OF B3 /r clear the selected bit.

OF B3 Ir Copy the value of the selected bit to the carry flag, then

BTR reg/memé64, reg64 clear the selected bit.

OF BA/6 ib Copy the value of the selected bit to the carry flag, then

BTR reg/mem16, imm8 clear the selected bit.

OF BA /6 ib Copy the value of the selected bit to the carry flag, then

BTR reg/mem32, imm8 clear the selected bit.

OF BA /6 ib Copy the value of the selected bit to the carry flag, then

BTR reg/mem64, imm8 clear the selected bit.

Related Instructions

BT, BTC, BTS

124 General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

rFLAGS Affected

ID | VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF

U U u U u M
21 1 20 | 19 | 18 | 17 | 16 | 14 13:12 1110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #5S X X X non-canonical.
A memory address exceeded a data segment limit or was non-
X X X A
. canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
General-Purpose 125

Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

BTS Bit Test and Set

Copies a bit, specified by bit index in a register or 8-bit immediate value (second operand), from a bit
string (first operand), also called the bit base, to the carry flag (CF) of the rFLAGS register, and then
sets the bit in the bit string to 1.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64 (depending on the
operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address is the bit base of
the bit string. If the bit index is in a register, the instruction selects a bit position relative to the bit base
in the range 263 10 +293 _ 1 if the operand size is 64, 23 t0+231 -1, if the operand size is 32, and
23 t0 +215 — 1 if the operand size is 16. If the bit index is in an immediate value, the bit selected is
that value modulo 16, 32, or 64, depending on the operand size.

This instruction is useful for implementing semaphores in concurrent operating systems. Such
applications should precede this instruction with the LOCK prefix. For details about the LOCK prefix,
see “Lock Prefix” on page 11.

Mnemonic Opcode Description

Copy the value of the selected bit to the carry flag, then

BTS reg/mem16, reg16 OF AB /r set the selected bit.
Copy the value of the selected bit to the carry flag, then
BTS reg/mem32, reg32 OF AB Ir set the selected bit.

OF AB /r Copy the value of the selected bit to the carry flag, then

BTS reg/mem64, reg64 set the selected bit.

OF BA/5 ib Copy the value of the selected bit to the carry flag, then

BTS reg/mem16, imm8 set the selected bit.

OF BA/5 ib Copy the value of the selected bit to the carry flag, then

BTS reg/mem32, imm8 set the selected bit.

OF BA/5 ib Copy the value of the selected bit to the carry flag, then

BTS reg/mem64, imm8 set the selected bit.

Related Instructions

BT, BTC, BTR

126 General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

AMDG64 Technology

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
u Ul U]|]U|U]/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #5S X X non-canonical.
A memory address exceeded a data segment limit or was non-
X X i
. canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.

General-Purpose
Instruction Reference

127

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

BZHI Zero High Bits

Copies bits, left to right, from the first source operand starting with the bit position specified by the
second source operand (index), writes these bits to the destination, and clears all the bits in positions
greater than or equal to index.

This instruction has three operands:
BZHI dest, src, index
In 64-bit mode, the operand size (op_size) is determined by the value of VEX.W. If VEX.W is 1, the

operand size is 64 bits; if VEX.W is 0, the operand size is 32 bits. In 32-bit mode, VEX.W is ignored.
16-bit operands are not supported.

The destination (des?) is a general purpose register. The first source operand (src) is either a general
purpose register or a memory operand. The second source operand is a general purpose register. Bits
[7:0] of this register, treated as an unsigned 8-bit integer, specify the index of the most-significant bit
of the first source operand to be copied to the corresponding bit of the destination. Bits [op_size-
1:index] of the destination are cleared.

If the value of index is greater than or equal to the operand size, index is set to (op_size-1). In this case,
the CF flag is set.

This instruction is a BMI2 instruction. Support for this instruction is indicated by CPUID
Fn0000 0007 EBX x0[BMI2]= 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
BZHI reg32, reg/mem32, reg32 C4 RXB.02 0.index.0.00 F5/r
BZHI reg64, reg/mem64, reg64 C4 RXB.02 1.index.0.00 F5/r

Related Instructions

128 General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

AMDG64 Technology

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U/|U/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. Aflag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Mode
Exception Virtual Cause of Exception
Real| 8086 |Protected
X X BMI2 instructions are only recognized in protected mode.
. BMI2 instructions are not supported, as indicated by
Invalid opcode, #UD X | CPUID Fn0000_0007_EBX_xO[BMI2] = 0.
X VEX.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #55 was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
; An unaligned memory reference was performed while
Alignment check, #AC X alignment checking was enabled.

General-Purpose
Instruction Reference

129

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

CALL (Near) Near Procedure Call

Pushes the offset of the next instruction onto the stack and branches to the target address, which
contains the first instruction of the called procedure. The target operand can specify a register, a
memory location, or a label. A procedure accessed by a near CALL is located in the same code
segment as the CALL instruction.

If the CALL target is specified by a register or memory location, then a 16-, 32-, or 64-bit rIP is read
from the operand, depending on the operand size. A 16- or 32-bit rIP is zero-extended to 64 bits.

If the CALL target is specified by a displacement, the signed displacement is added to the rIP (of the
following instruction), and the result is truncated to 16, 32, or 64 bits, depending on the operand size.
The signed displacement is 16 or 32 bits, depending on the operand size.

In all cases, the rIP of the instruction after the CALL is pushed on the stack, and the size of the stack
push (16, 32, or 64 bits) depends on the operand size of the CALL instruction.

For near calls in 64-bit mode, the operand size defaults to 64 bits. The E8 opcode results in
RIP = RIP + 32-bit signed displacement and the FF /2 opcode results in RIP = 64-bit offset from
register or memory. No prefix is available to encode a 32-bit operand size in 64-bit mode.

At the end of the called procedure, RET is used to return control to the instruction following the
original CALL. When RET is executed, the rIP is popped off the stack, which returns control to the
instruction after the CALL.

See CALL (Far) for information on far calls—calls to procedures located outside of the current code
segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

Mnemonic Opcode Description
CALL rel16off ES iw Sligglracéeg%v;im‘ the target specified by a 16-bit relative
CALL rel32off E8 id ld\lizg[a%eéllnvgm. the target specified by a 32-bit relative
CALL reg/mem16 FF /2 Near call with the target specified by reg/mem16.
CALL reg/mem32 FF /2 Near call with the target specified by reg/mem32. (There

is no prefix for encoding this in 64-bit mode.)

CALL reg/mem64 FF /2 Near call with the target specified by reg/mem64.

For details about control-flow instructions, see “Control Transfers” in Volume 1, and “Control-
Transfer Privilege Checks” in Volume 2.

130 General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

Action

// For function ShadowStacksEnabled ()

AMDG64 Technology

// see "Pseudocode Definition" on page 57

CALLN START:

IF (OPCODE == calln abs [mem])

temp RIP = READ MEM.z [mem]
ELSE

temp RIP = z-sized instruction offset field,
IF (OPCODE == calln rel)

temp RIP = temp RIP + RIP.v

// CALLN, abs indirect

// CALLN, rel/abs direct

zero-extended to 64 bits

// if relative, add offset to rIP

IF (stack is not large enough for a v-sized push)

EXCEPTION[#SS(0)]
PUSH.v next RIP
IF ((64BIT MODE) &&

(164BIT MODE) &&
EXCEPTION [#GP (0)]

IF ((ShadowStacksEnabled (current CPL))

{

IF (v == 2)
{
SSTK WRITE MEM.d [SSP-4] = IP
SSP = SSP - 4
}

ELSEIF (v == 4)
{
SSTK WRITE MEM.d [SSP-4] = EIP
SSP = SSP - 4
}

ELSE //
{
SSTK WRITE MEM.qg [SSP-8] = RIP
SSP = SSP - 8
}

} // end shadow stacks enabled

// operand size

// operand size

(v == 8) // operand size

RIP = temp RIP

EXIT

Related Instructions

CALL(Far), RET(Near), RET(Far)

(temp RIP is non-canonical) ||
(temp RIP > CS.limit))

&& (OPCODE != calln +0))

16

32

64

General-Purpose
Instruction Reference

131

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

rFLAGS Affected
None.
Exceptions
Virtual
Exception Real| 8086 |[Protected Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #5S X X X non-canonical.
X X X A memory address exceeded a data segment limit or was non-
canonical.
General protection -
’ The target offset exceeded the code segment limit or was non-
#GP X X X canonical.
X A null data segment was used to reference memory.
Alignment Check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
Page Fault, #PF X X A page fault resulted from the execution of the instruction.

132

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

CALL (Far) Far Procedure Call

Pushes procedure linking information onto the stack and branches to the target address, which contains
the first instruction of the called procedure. The operand specifies a target selector and offset.

The instruction can specify the target directly, by including the far pointer in the immediate and
displacement fields of the instruction, or indirectly, by referencing a far pointer in memory. In 64-bit
mode, only indirect far calls are allowed; executing a direct far call (opcode 9A) generates an
undefined opcode exception. For both direct and indirect far calls, if the CALL (Far) operand-size is
16 bits, the instruction's operand is a 16-bit offset followed by a 16-bit selector. If the operand-size is
32 or 64 bits, the operand is a 32-bit offset followed by a 16-bit selector.

The target selector used by the instruction can be a code selector in all modes. Additionally, the target
selector can reference a call gate in protected mode, or a task gate or TSS selector in legacy protected
mode.

» Targetis a code selector—The CS:rIP of the next instruction is pushed to the stack, using operand-
size stack pushes. Then code is executed from the target CS:rIP. In this case, the target offset can
only be a 16- or 32-bit value, depending on operand-size, and is zero-extended to 64 bits. No CPL
change is allowed.

» Target is a call gate—The call gate specifies the actual target code segment and offset. Call gates
allow calls to the same or more privileged code. If the target segment is at the same CPL as the
current code segment, the CS:rIP of the next instruction is pushed to the stack.

If the CALL (Far) changes privilege level, then a stack-switch occurs, using an inner-level stack
pointer from the TSS. The CS:rIP of the next instruction is pushed to the new stack. If the mode is
legacy mode and the param-count field in the call gate is non-zero, then up to 31 operands are
copied from the caller's stack to the new stack. Finally, the caller's SS:rSP is pushed to the new
stack.

When calling through a call gate, the stack pushes are 16-, 32-, or 64-bits, depending on the size of
the call gate. The size of the target rIP is also 16, 32, or 64 bits, depending on the size of the call
gate. If the target rlP is less than 64 bits, it is zero-extended to 64 bits. Long mode only allows 64-
bit call gates that must point to 64-bit code segments.

» Target is a task gate or a TSS—If the mode is legacy protected mode, then a task switch occurs.
See “Hardware Task-Management in Legacy Mode” in volume 2 for details about task switches.
Hardware task switches are not supported in long mode.

See CALL (Near) for information on near calls—calls to procedures located inside the current code
segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

General-Purpose 133
Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

Mnemonic Opcode Description
CALL FAR pntr16:16 9A od Gantained in the instruction. (Invalid m 64.51t modey)
CALL FAR prtr16:32 9A cp cantained in the instruction. (Invalid m 6451t mode)
CALL FAR mem16:16 FF /3 ilznarrncéilqlérsairect, with the target specified by a far pointer
CALL FAR mem16:32 FF /3 Far call indirect, with the target specified by a far pointer

in memory.

Action

// For functions READ DESCRIPTOR, READ INNER LEVEL SP,
// ShadowStacksEnabled and SET TOKEN BUSY see "Pseudocode Definition"
// on page 57

CALLF START:

IF (REAL MODE)

CALLF REAL OR VIRTUAL // CALLF real mode
ELSEIF (PROTECTED MODE)

CALLF PROTECTED // CALLF protected mode
ELSE // virtual mode

CALLF_REAL OR VIRTUAL // CALLF virtual mode

CALLF REAL OR VIRTUAL:

IF (OPCODE == callf [mem]) // CALLF real mode, indirect

{
temp RIP = READ MEM.z [mem]

temp_CS = READ_MEM.W [mem+7Z]
}
ELSE // CALLF real mode, direct
{
temp RIP = z-sized instruction offset field, zero-extended to 64 bits
temp CS = selector specified in the instruction

}
PUSH.v old_CS
PUSH.v next RIP

IF (temp RIP > CS.limit)
EXCEPTION [#GP(0)]

CS.sel = temp CS
CS.base temp CS SHL 4
RIP = temp RIP

EXIT // end CALLF real or virtual

134 General-Purpose

Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

CALLF PROTECTED:

IF (OPCODE == callf [mem]) // CALLF protected mode, indirect
{
temp offset = READ MEM.z [mem]
temp sel = READ MEM.w [mem+Z]
}
ELSE // CALLF protected mode, direct

{
IF (64BIT MODE)

EXCEPTION [#UD] // CALLF direct is illegal in 64-bit mode.
temp offset = z-sized instruction offset field, zero-extended to 64 bits
temp sel = selector specified in the instruction

}

temp desc = READ DESCRIPTOR (temp sel, cs_chk)

IF (temp desc.attr.type == ’available tss’)
TASK SWITCH // Using temp sel as the target TSS
ELSEIF (temp desc.attr.type == ’taskgate’)
TASK _SWITCH // Using the TSS selector in the task gate as the target TSS
ELSEIF (temp desc.attr.type == ’'callgate’)
CALLF CALLGATE // CALLF through callgate
ELSE // (temp desc.attr.type == ’'code’)

{ // the selector refers to a code descriptor

temp RIP = temp offset // the target RIP is the instruction offset field
CS = temp desc

PUSH.v old CS

PUSH.v next RIP

IF ((!64BIT MODE) && (temp RIP > CS.limit))
EXCEPTION [#GP(0)] // temp RIP can't be non-canonical because its' a
// 16— or 32-bit offset, zero-extended to 64 bits
RIP = temp RIP

IF ShadowStacksEnabled at current CPL
{

IF (v == 2)
temp LIP = CS.base + IP // operand size = 16
ELSEIF (v == 4)
temp LIP = CS.base + EIP // operand size = 32
ELSE // (v == 8)
temp LIP = RIP // operand size = 64
IF EFER.LMA && (temp desc.attr.L == 0) && (SSP[63:32] != 0)
EXCEPTION [#GP (0)] // SSP must be <4 GB

Align SSP to 8B boundary, storing 4B of 0 if needed
old SSP = SSP
SSTK_WRITE MEM.q [SSP-16] = old CS // push CS, LIP, SSP

General-Purpose 135
Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

SSTK_WRITE MEM.q [SSP-8] temp LIP // onto the shadow stack
SSTK_WRITE_MEM.q [SSP] = Old_SSP

SSP = SSP - 24

}

EXIT
} // end CALLF selector=code segment

CALLF CALLGATE:

IF (LONG_MODE) // the gate size controls the size of the stack pushes
v=8-byte // Long mode only uses 64-bit call gates, force 8-byte opsize
ELSEIF (temp desc.attr.type == 'callgate32')
v=4-byte // Legacy mode, using a 32-bit call-gate, force 4-byte
ELSE // (temp desc.attr.type == 'callgatel6')

v=2-byte // Legacy mode, using a 16-bit call-gate, force 2-byte opsize

// the target CS and RIP both come from the call gate.
temp RIP = temp desc.offset

IF (LONG_MODE)

{ // read 2nd half of 16-byte call-gate
temp upper = READ MEM.q [temp sel+8] // to get upper 32 bits of target RIP
IF (temp upper's extended attribute bits != 0)

EXCEPTION [#GP (temp sel)]
temp RIP = tempRIP + (temp upper SHL 32) // Concatenate both halves of RIP

}

CS = READ DESCRIPTOR (temp desc.segment, callgate check)

IF ((64BIT_MODE) && (temp RIP is non-canonical) ||
(!64BIT MODE) && (temp RIP > CS.limit))
EXCEPTIONI[#GP (0)]

IF (CS.attr.conforming == 1)
temp CPL = CPL

ELSE
temp CPL = CS.attr.dpl

IF (CPL == temp CPL) // CALLF through gate, to same privilege
{
PUSH.v old CS
PUSH.v next RIP
RIP = temp RIP

IF (ShadowStacksEnabled at current CPL)
{

IF (v == 2)
temp LIP = CS.base + IP // operand size = 16
ELSEIF (v == 4)
136 General-Purpose

Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

temp LIP = CS.base + EIP // operand size = 32
ELSE // (v == 8)
temp LIP = RIP // operand size = 64
IF ((EFER.LMA && (temp desc.attr.L == 0)) && (SSP[63:32] != 0))
EXCEPTION [#GP(0)] // SSP must be <4 GB

Align SSP to next 8B boundary, storing 4B of 0 if needed
old SSP = SSP
SSTK _WRITE MEM.q [SSP-24] = old CS // push CS, LIP, SSP
SSTK WRITE MEM.q [SSP-16] temp LIP // onto the shadow stack
SSTK WRITE MEM.q [SSP-8] = old SSP
SSP = SSP - 24
} // end shadow stacks enabled

EXIT // end CALLF through gate, to same privilege

}

ELSE // CALLF through gate, to more privilege

{

old CPL = CPL

CPL = temp CPL

temp ist = 0 // CALLF doesn't use IST pointers.

temp SS desc:temp RSP = READ INNER LEVEL SP(CPL,temp ist)

RSP.g = temp RSP

SS = temp SS desc

PUSH.v old SS // #SS on this or next pushes use SS.sel as error code
PUSH.v old RSP

IF (LEGACY MODE) // Legacy-mode call gates have a param count field
temp PARAM COUNT = temp desc.attr.param count
FOR (I=temp PARAM COUNT; I>0; I--)
{
temp DATA = READ MEM.v [old SS: (old RSP+I*V)]
PUSH.v temp DATA
}

PUSH.v old CS
PUSH.v next RIP
RIP = temp RIP

IF ((ShadowStacksEnabled at CPL=3) && (old CPL == 3))
PL3 SSP = SSP

IF (ShadowStacksEnabled at new CPL)
{
old SSP = SSP
SSP PLn SSP // where n=new CPL

SET SSTK TOKEN BUSY (SSP) // check for valid token and set busy bit

IF old CPL != 3
{

General-Purpose 137
Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

// push CS,LIP,SSP onto sstk

SSTK WRITE MEM.q [SSP-24] = old CS // push CS
SSTK WRITE MEM.q [SSP-16] = temp LIP // LIP and
SSTK WRITE MEM.g [SSP-8] = old SSP // SSP to the shadow stack

SSP =
}

SSP - 24

} // end shadow stacks enabled

EXIT
} // end CALLF to more priv

Related Instructions

CALL (Near), RET (Near), RET (Far)

rFLAGS Affected

at new CPL

None, unless a task switch occurs, in which case all flags are modified.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
Invalid opcode, X X X The far CALL indirect opcode (FF /3) had a register operand.
#UD X The far CALL direct opcode (9A) was executed in 64-bit mode.
X As part of a stack switch, the target stack segment selector or
rSP in the TSS was beyond the TSS limit.
X As part of a stack switch, the target stack segment selector in
the TSS was a null selector.
X As part of a stack switch, the target stack selector’s Tl bit was
set, but LDT selector was a null selector.
As part of a stack switch, the target stack segment selector in
Invalid TSS, #TS X the TSS was beyond the limit of the GDT or LDT descriptor
(selector) table.
X As part of a stack switch, the target stack segment selector in
the TSS contained a RPL that was not equal to its DPL.
As part of a stack switch, the target stack segment selector in
X the TSS contained a DPL that was not equal to the CPL of the
code segment selector.
X As part of a stack switch, the target stack segment selector in
the TSS was not a writable segment.
Segment not
present, #NP X -rl\-gte a;gcszzi?ed code segment, call gate, task gate, or TSS was
(selector) P :
A memory address exceeded the stack segment limit or was
Stack, #5S X X X non-canonical, and no stack switch occurred.
138 General-Purpose

Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

AMDG64 Technology

Virtual
Exception Real| 8086 |Protected Cause of Exception
X After a stack switch, a memory access exceeded the stack
segment limit or was non-canonical.
Stack, #SS - - -
(selector) As part of a stack switch, the SS register was loaded with a
X non-null segment selector and the segment was marked not
present.
X X X A memory address exceeded a data segment limit or was non-
canonical.
General protection I
’ The target offset exceeded the code segment limit or was non-
#GP X X X canonical.
X A null data segment was used to reference memory.
X The target code segment selector was a null selector.
X A code, call gate, task gate, or TSS descriptor exceeded the
descriptor table limit.
X A segment selector’s Tl bit was set but the LDT selector was a
null selector.
The segment descriptor specified by the instruction was not a
X code segment, task gate, call gate or available TSS in legacy
mode, or not a 64-bit code segment or a 64-bit call gate in long
mode.
The RPL of the non-conforming code segment selector
X specified by the instruction was greater than the CPL, or its
DPL was not equal to the CPL.
General protection, X The DPL of the conforming code segment descriptor specified
;(#Gll:) tor) by the instruction was greater than the CPL.
selector
The DPL of the callgate, taskgate, or TSS descriptor specified
X by the instruction was less than the CPL, or less than its own
RPL.
X The segment selector specified by the call gate or task gate
was a null selector.
The segment descriptor specified by the call gate was not a
X code segment in legacy mode, or not a 64-bit code segment in
long mode.
X The DPL of the segment descriptor specified by the call gate
was greater than the CPL.
X The 64-bit call gate’s extended attribute bits were not zero.
X The TSS descriptor was found in the LDT.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while

#AC

alignment checking was enabled.

General-Purpose

Instruction Reference

139

AMDZU

AMDG64 Technology

CcBW
CWDE
CDQE

24594—Rev. 3.32—March 2021

Convert to Sign-Extended

Copies the sign bit in the AL or eAX register to the upper bits of the rAX register. The effect of this
instruction is to convert a signed byte, word, or doubleword in the AL or eAX register into a signed
word, doubleword, or quadword in the rAX register. This action helps avoid overflow problems in

signed number arithmetic.

The CDQE mnemonic is meaningful only in 64-bit mode.

Mnemonic Opcode
CBW 98
CWDE 98
CDQE 98

Related Instructions
CWD, CDQ, CQO
rFLAGS Affected

None

Exceptions

None

Description
Sign-extend AL into AX.
Sign-extend AX into EAX.
Sign-extend EAX into RAX.

140

General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
CWD Convert to Sign-Extended
cbhQ
cQo

Copies the sign bit in the rAX register to all bits of the rDX register. The effect of this instruction is to
convert a signed word, doubleword, or quadword in the rAX register into a signed doubleword,
quadword, or double-quadword in the rDX:rAX registers. This action helps avoid overflow problems
in signed number arithmetic.

The CQO mnemonic is meaningful only in 64-bit mode.

Mnemonic Opcode Description

CWD 99 Sign-extend AX into DX:AX.
CcDQ 99 Sign-extend EAX into EDX:EAX.
CcQo 99 Sign-extend RAX into RDX:RAX.

Related Instructions

CBW, CWDE, CDQE

rFLAGS Affected

None

Exceptions

None

General-Purpose 141
Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

CLC Clear Carry Flag
Clears the carry flag (CF) in the rFLAGS register to zero.

Mnemonic Opcode Description

CLC F8 Clear the carry flag (CF) to zero.

Related Instructions
STC, CMC

rFLAGS Affected

ID | VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
0

21 120 | 19 | 18 | 17 | 16 | 14 13:12 1110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions

None

142 General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

CLD Clear Direction Flag

Clears the direction flag (DF) in the rFLAGS register to zero. If the DF flag is 0, each iteration of a
string instruction increments the data pointer (index registers rSI or rDI). If the DF flag is 1, the string
instruction decrements the pointer. Use the CLD instruction before a string instruction to make the
data pointer increment.

Mnemonic Opcode Description
CLD FC Clear the direction flag (DF) to zero.
Related Instructions

CMPSx, INSx, LODSx, MOVSx, OUTSx, SCASx, STD, STOSx

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
0
21 120 | 19 | 18 | 17 | 16 | 14 13:12 1110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions

None

General-Purpose 143
Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

CLFLUSH Cache Line Flush

Flushes the cache line specified by the mem$ linear-address. The instruction checks all levels of the
cache hierarchy—internal caches and external caches—and invalidates the cache line in every cache
in which it is found. If a cache contains a dirty copy of the cache line (that is, the cache line is in the
modified or owned MOESI state), the line is written back to memory before it is invalidated. The
instruction sets the cache-line MOESI state to invalid.

The instruction also checks the physical address corresponding to the linear-address operand against
the processor’s write-combining buffers. If the write-combining buffer holds data intended for that
physical address, the instruction writes the entire contents of the buffer to memory. This occurs even
though the data is not cached in the cache hierarchy. In a multiprocessor system, the instruction checks
the write-combining buffers only on the processor that executed the CLFLUSH instruction.

On processors that do not support the CLFLUSHOPT instruction, (CPUID Fn
0000 0007 EBX xO[CLFLOPT]=0), the CLFLUSH instruction is weakly ordered with respect to
other instructions that operate on memory. Speculative loads initiated by the processor, or specified
explicitly using cache-prefetch instructions, can be reordered around a CLFLUSH instruction. Such
reordering can invalidate a speculatively prefetched cache line, unintentionally defeating the prefetch
operation. The only way to avoid this situation is to use the MFENCE instruction after the CLFLUSH
instruction to force strong-ordering of the CLFLUSH instruction with respect to subsequent memory
operations. The CLFLUSH instruction may also take effect on a cache line while stores from previous
store instructions are still pending in the store buffer. To ensure that such stores are included in the
cache line that is flushed, use an MFENCE instruction ahead of the CLFLUSH instruction. Such stores
would otherwise cause the line to be re-cached and modified after the CLFLUSH completed. The
LFENCE, SFENCE, and serializing instructions are not ordered with respect to CLFLUSH.

On processors that support CLFLUSHOPT, (CPUID Fn 0000 0007 _EBX xO[CLFLOPT]=1),
CLFLUSH is ordered with respect to locked operations, fence instructions, and CLFLUSHOPT,
CLFLUSH and write instructions that touch the same cache line. CLFLUSH is not ordered with
CLFLUSHOPT, CLFLUSH and write instructions to other cache lines.

The CLFLUSH instruction behaves like a load instruction with respect to setting the page-table
accessed and dirty bits. That is, it sets the page-table accessed bit to 1, but does not set the page-table
dirty bit.

The CLFLUSH instruction executes at any privilege level. CLFLUSH performs all the segmentation
and paging checks that a 1-byte read would perform, except that it also allows references to execute-
only segments.

The CLFLUSH instruction is supported if the feature flag CPUID Fn0000 0001 EDX[CLFSH] is set.
The 8-bit field CPUID Fn 0000 0001 EBX[CLFlush] returns the size of the cacheline in quadwords.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

144 General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

Mnemonic
CLFLUSH mem8

Related Instructions

Opcode
OF AE /7

INVD, WBINVD, CLFLUSHOPT, CLZERO

AMDG64 Technology

Description

flush cache line containing mem8.

rFLAGS Affected
None
Exceptions
Virtual
Exception (vector) | Real | 8086 |Protected Cause of Exception
; CLFLUSH instruction is not supported, as indicated by
Invalid opcode, #UD | X X X | CPUID Fn0000_0001 EDX[CLFSH] = 0.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
i X X A memory address exceeded a data segment limit or
General protection, was non-canonical.
#GP
A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the

instruction.

General-Purpose
Instruction Reference

145

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

CLFLUSHOPT Optimized Cache Line Flush

Flushes the cache line specified by the mem§ linear-address. The instruction checks all levels of the
cache hierarchy-internal caches and external caches-and invalidates the cache line in every cache in
which it is found. If a cache contains a dirty copy of the cache line (that is, the cache line is in the
modified or owned MOESI state), the line is written back to memory before it is invalidated. The
instruction sets the cache-line MOESI state to invalid.

The instruction also checks the physical address corresponding to the linear-address operand against
the processor's write-combining buffers. If the write-combining buffer holds data intended for that
physical address, the instruction writes the entire contents of the buffer to memory. This occurs even
though the data is not cached in the cache hierarchy. In a multiprocessor system, the instruction checks
the write-combining buffers only on the processor that executed the CLFLUSHOPT instruction.

The CLFLUSHOPT instruction is ordered with respect to fence instructions and locked operations.
CLFLUSHOPT is also ordered with writes, CLFLUSH, and CLFLUSHOPT instructions that
reference the same cache line as the CLFLUSHOPT. CLFLUSHOPT is not ordered with writes,
CLFLUSH, and CLFLUSHOPT to other cache lines. To enforce ordering in that situation, a SFENCE
instruction or stronger should be used.

Speculative loads initiated by the processor, or specified explicitly using cache-prefetch instructions,
can be reordered around a CLFLUSHOPT instruction. Such reordering can invalidate a speculatively
prefetched cache line, unintentionally defeating the prefetch operation.

The only way to avoid this situation is to use the MFENCE instruction after the CLFLUSHOPT
instruction to force strong ordering of the CLFLUSHOPT instruction with respect to subsequent
memory operations.

The CLFLUSHOPT instruction behaves like a load instruction with respect to setting the page-table
accessed and dirty bits. That is, it sets the page-table accessed bit to 1, but does not set the page-table
dirty bit.

The CLFLUSHOPT instruction executes at any privilege level. CLFLUSHOPT performs all the
segmentation and paging checks that a 1-byte read would perform, except that it also allows references
to execute-only segments.

The CLFLUSHOPT instruction is supported if the feature flag CPUID
Fn0000 0007 EBX xO[CLFLOPT]is set. The 8-bit field CPUID Fn 0000 0001 EBX[CLFlush]
returns the size of the cacheline in quadwords.

Mnemonic Opcode Description
CLFLUSHOPT mem8 66 OF AE /7 Flush cache line containing mem8
146 General-Purpose

Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

Related Instructions

AMDG64 Technology

CLFLUSH
rFLAGS Affected
None
Exceptions
Virtual
Exception (vector) | Real | 8086 |Protected Cause of Exception
X X X CLFLUSH instruction is not supported, as indicated by
. CPUID Fn0000_0001_EDX[CLFSH] = 0.
Invalid opcode, #UD -
X X X Instruction not supported by CPUID
Fn0000_0007_EBX_xO[CLFLUSHOPT] =0
A memory address exceeded the stack segment limit
Stack, #85 X X X or was non-canonical.
i X X X A memory address exceeded a data segment limit or
General protection, was non-canonical.
#GP
A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the

instruction.

General-Purpose
Instruction Reference

147

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

CLWB Cache Line Write Back and Retain

Flushes the cache line specified by the mem8 linear address. The instruction checks all levels of the
cache hierarchy—internal caches and external caches—and causes the cache line, if dirty, to be written
to memory. The cache line may be retained in the cache where found in a non-dirty state.

The CLWB instruction is weakly ordered with respect to other instructions that operate on memory.
Speculative loads initiated by the processor, or specified explicitly using cache prefetch instructions,
can be reordered around a CLWB instruction. CLWB is ordered naturally with older stores to the same
address on the same logical processor. To create strict ordering of CLWB use a store-ordering
instruction such as SFENCE.

The CLWB instruction behaves like a load instruction with respect to setting the page table accessed
and dirty bits. That is, it sets the page table accessed bit to 1, but does not set the page table dirty bit.

The CLWB instruction executes at any privilege level. CLWB performs all the segmentation and
paging checks that a 1-byte read would perform, except that it also allows references to execute only
segments.

The CLWB instruction is supported if the feature flag CPUID Fn0000 0007-EBX[24]=1.
The 8-bit field CPUID Fn 0000 0001 EBX[CLFlush] returns the size of the cacheline in quadwords.

Mnemonic Opcode Description
CLWB 66 OF AE /6 Cache line write-back.

Related Instructions

CLFLUSH, CLFLUSHOPT, WBINVD, WBNOINVD

148 General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

AMDG64 Technology

rFLAGS Affected
ID |[VIP|VIF| AC | VM | RF | NT IOPL OF |[DF | IF | TF | SF | ZF | AF | PF | CF
21 | 20| 19 | 18 | 17 | 16 | 14 13:12 11 |10 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception (vector) | Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X | mstiaction not %‘gﬁg}ﬁi%y CPUID
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
i X X X A memory address exceeded a data segment limit or
General protection, was non-canonical.
#GP
A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.

General-Purpose
Instruction Reference

149

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

CLZERO Zero Cache Line

Clears the cache line specified by the logical address in rAX by writing a zero to every byte in the line.
The instruction uses an implied non temporal memory type, similar to a streaming store, and uses the
write combining protocol to minimize cache pollution.

CLZERO is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE or stronger to enforce memory ordering of CLZERO with respect to other
store instructions.

The CLZERO instruction executes at any privilege level. CLZERO performs all the segmentation and
paging checks that a store of the specified cache line would perform.

The CLZERO instruction is supported if the feature flag CPUID Fn8000 0008 EBX[CLZERO] is
set. The 8-bit field CPUID Fn 0000 0001 EBX[CLFlush] returns the size of the cacheline in
quadwords.

Mnemonic Opcode Description

CLZERO rAX OF 01 FC Clears cache line containing rAX

Related Instructions

CLFLUSH
rFLAGS Affected
None
Exceptions
Virtual
Exception (vector) | Real | 8086 |Protected Cause of Exception
; Instruction not supported by CPUID
Invalid opcode, #UD | X X X | Fng000_0008_EBX[CLZERO] = 0
A memory address exceeded the stack segment limit
Stack, #35S X X X or was non-canonical.
i X X X A memory address exceeded a data segment limit or
General protection, was non-canonical.
#GP
A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
150 General-Purpose

Instruction Reference

AMDZ\
AMDG64 Technology

24594—Rev. 3.32—March 2021

Complement Carry Flag

CMC
Complements (toggles) the carry flag (CF) bit of the rTFLAGS register.
Mnemonic Opcode Description
CMC F5 Complement the carry flag (CF).

Related Instructions
CLC, STC
rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF

M

21 120 |19 | 18 | 17 | 16 | 14 13:12 1110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions

None

General-Purpose
Instruction Reference

151

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

CMOVcc Conditional Move

Conditionally moves a 16-bit, 32-bit, or 64-bit value in memory or a general-purpose register (second
operand) into a register (first operand), depending upon the settings of condition flags in the rTFLAGS
register. If the condition is not satisfied, the destination register is not modified. For the memory-based
forms of CMOVcc, memory-related exceptions may be reported even if the condition is false. In 64-bit
mode, CMOVcc with a 32-bit operand size will clear the upper 32 bits of the destination register even
if the condition is false.

The mnemonics of CMOVcc instructions denote the condition that must be satisfied. Most assemblers
provide instruction mnemonics with A (above) and B (below) tags to supply the semantics for
manipulating unsigned integers. Those with G (greater than) and L (less than) tags deal with signed
integers. Many opcodes may be represented by synonymous mnemonics. For example, the CMOVL
instruction is synonymous with the CMOVNGE instruction and denote the instruction with the opcode
OF 4C.

The feature flag CPUID Fn0000 0001 EDX[CMOV] or CPUID Fn8000 0001 EDX[CMOV] =1
indicates support for CMOV cc instructions on a particular processor implementation.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Opcode Description
CMOVO reg16, reg/mem16
CMOVO reg32, reg/mem32 OF 40 /r Move if overflow (OF = 1).

CMOVO reg64, reg/mem64

CMOVNO reg16, reg/mem16
CMOVNO reg32, reg/mem32 OF 41 /r Move if not overflow (OF = 0).
CMOVNO reg64, reg/mem64

CMOVB reg16, reg/mem16
CMOVB reg32, reg/mem32 OF 42 /r Move if below (CF = 1).
CMOVB reg64, reg/mem64

CMOVC reg16, reg/mem16
CMOVC reg32, reg/mem32 OF 42 /r Move if carry (CF = 1).
CMOVC reg64, reg/mem64

CMOVNAE reg16, reg/mem16
CMOVNAE reg32, reg/mem32 OF 42 /r Move if not above or equal (CF = 1).
CMOVNAE reg64, reg/mem64

CMOVNB reg16,reg/mem16

CMOVNB reg32,reg/mem32 OF 43 /r Move if not below (CF = 0).
CMOVNB reg64,reg/mem64

CMOVNC reg16,reg/mem16

CMOVNC reg32,reg/mem32 OF 43 /r Move if not carry (CF = 0).

CMOVNC reg64,reg/mem64

152 General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
Mnemonic Opcode Description

CMOVAE reg16, reg/mem16

CMOVAE reg32, reg/mem32 OF 43 /r Move if above or equal (CF = 0).

CMOVAE reg64, reg/mem64

CMOVZ reg16, reg/mem16
CMOVZ reg32, reg/mem32 OF 44 /r Move if zero (ZF = 1).
CMOVZ reg64, reg/mem64

CMOVE reg16, reg/mem16
CMOVE reg32, reg/mem32 OF 44 /r Move if equal (ZF =1).
CMOVE reg64, reg/mem64

CMOVNZ reg16, reg/mem16
CMOVNZ reg32, reg/mem32 OF 45 /r Move if not zero (ZF = 0).
CMOVNZ reg64, reg/mem64

CMOVNE reg16, reg/mem16
CMOVNE reg32, reg/mem32 OF 45 /r Move if not equal (ZF = 0).
CMOVNE reg64, reg/mem64

CMOVBE reg16, reg/mem16
CMOVBE reg32, reg/mem32 OF 46 /r Move if below or equal (CF =1 or ZF = 1).
CMOVBE reg64, reg/mem64

CMOVNA reg16, reg/mem16
CMOVNA reg32, reg/mem32 OF 46 /r Move if not above (CF = 1 or ZF = 1).
CMOVNA reg64, reg/mem64

CMOVNBE reg16, reg/mem16
CMOVNBE reg32,reg/mem32 OF 47 /r Move if not below or equal (CF = 0 and ZF = 0).
CMOVNBE reg64,reg/mem64

CMOVA reg16, reg/mem16
CMOVA reg32, reg/mem32 OF 47 /r Move if above (CF = 0 and ZF = 0).
CMOVA reg64, reg/mem64

CMOVS reg16, reg/mem16
CMOVS reg32, reg/mem32 OF 48 /r Move if sign (SF =1).
CMOVS reg64, reg/mem64

CMOVNS reg16, reg/mem16
CMOVNS reg32, reg/mem32 OF 49 /r Move if not sign (SF = 0).
CMOVNS reg64, reg/mem64

CMOVP reg16, reg/mem16
CMOVP reg32, reg/mem32 OF 4A /r Move if parity (PF = 1).
CMOVP reg64, reg/mem64

CMOVPE reg16, reg/mem16
CMOVPE reg32, reg/mem32 OF 4A/r Move if parity even (PF = 1).
CMOVPE reg64, reg/mem64

CMOVNP reg16, reg/mem16
CMOVNP reg32, reg/mem32 OF 4B /r Move if not parity (PF = 0).
CMOVNP reg64, reg/mem64

CMOVPO reg16, reg/mem16
CMOVPO reg32, reg/mem32 OF 4B /r Move if parity odd (PF = 0).
CMOVPO reg64, reg/memé64

General-Purpose 153
Instruction Reference

AMDZU

AMDG64 Technology

Mnemonic

CMOVL reg16, reg/mem16
CMOVL reg32, reg/mem32
CMOVL reg64, reg/mem64

CMOVNGE reg16, reg/mem16
CMOVNGE reg32, reg/mem32
CMOVNGE reg64, reg/mem64

CMOVNL reg16, reg/mem16
CMOVNL reg32, reg/mem32
CMOVNL reg64, reg/mem64

CMOVGE reg16, reg/mem16
CMOVGE reg32, reg/mem32
CMOVGE reg64, reg/mem64

CMOVLE reg16, reg/mem16
CMOVLE reg32, reg/mem32
CMOVLE reg64, reg/mem64

CMOVNG reg16, reg/mem16
CMOVNG reg32, reg/mem32
CMOVNG reg64, reg/mem64

CMOVNLE reg16, reg/mem16
CMOVNLE reg32, reg/mem32
CMOVNLE reg64, reg/mem64

CMOVG reg16, reg/mem16
CMOVG reg32, reg/mem32
CMOVG reg64, reg/mem64

Related Instructions

MOV

rFLAGS Affected

None

Exceptions

Opcode

OF 4C /r

OF 4C /r

OF 4D /r

OF 4D /r

OF 4E /r

OF 4E /r

OF 4F /r

OF 4F /r

24594—Rev. 3.32—March 2021

Description

Move if less (SF <> OF).

Move if not greater or equal (SF <> OF).

Move if not less (SF = OF).

Move if greater or equal (SF = OF).

Move if less or equal (ZF = 1 or SF <> OF).

Move if not greater (ZF = 1 or SF <> OF).

Move if not less or equal (ZF = 0 and SF = OF).

Move if greater (ZF = 0 and SF = OF).

Virtual
Exception Real| 8086

Protected

Cause of Exception

#UD

Invalid opcode, X X

X

CMOVcec instruction is not supported, as indicated by CPUID
Fn0000_0001_EDX[CMOQV] or Fn8000_0001_EDX[CMOV] =
0.

Stack, #SS X X

X

A memory address exceeded the stack segment limit or was
non-canonical.

#GP

General protection, X X

A memory address exceeded a data segment limit or was non-
canonical.

A null data segment was used to reference memory.

154

General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
Virtual
Exception Real| 8086 |[Protected Cause of Exception
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.

General-Purpose 155
Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

CMP Compare

Compares the contents of a register or memory location (first operand) with an immediate value or the
contents of a register or memory location (second operand), and sets or clears the status flags in the
rFLAGS register to reflect the results. To perform the comparison, the instruction subtracts the second
operand from the first operand and sets the status flags in the same manner as the SUB instruction, but
does not alter the first operand. If the second operand is an immediate value, the instruction sign-
extends the value to the length of the first operand.

Use the CMP instruction to set the condition codes for a subsequent conditional jump (Jcc),
conditional move (CMOVcc), or conditional SETcc instruction. Appendix F, “Instruction Effects on
RFLAGS” shows how instructions affect the rTFLAGS status flags.

Mnemonic Opcode Description
: . Compare an 8-bit immediate value with the contents of
CMP AL, imm8 3C ib the AL register.
CMP AX, imm16 3D iw Compare a 16-bit immediate value with the contents of

the AX register.

: : Compare a 32-bit immediate value with the contents of
CMP EAX, imm32 3D id the EAX register.

3D id Compare a 32-bit immediate value with the contents of

CMP RAX, imm32 the RAX register.

80 /7 ib Compare an 8-bit immediate value with the contents of

CMP reg/mem8, imm8 an 8-bit register or memory operand.

81 /7 iw Compare a 16-bitimmediate value with the contents of a

CMP reg/mem16, imm16 16-bit register or memory operand.

81 /7 id Compare a 32-bit immediate value with the contents of a

CMP reg/mem32, imm32 32-bit register or memory operand.

; . Compare a 32-bit signed immediate value with the
CMP reg/mem64, imm32 81/7id contents of a 64-bit register or memory operand.

; : Compare an 8-bit signed immediate value with the
CMP reg/mem16, imm8 83/7ib contents of a 16-bit register or memory operand.

. : Compare an 8-bit signed immediate value with the
CMP reg/mem32, imm8 83/7 ib contents of a 32-bit register or memory operand.

; . Compare an 8-bit signed immediate value with the
CMP reg/mem64, imm8 8317 ib contents of a 64-bit register or memory operand.

Compare the contents of an 8-bit register or memory
CMP reg/mem, reg8 38/r operand with the contents of an 8-bit register.

Compare the contents of a 16-bit register or memory
CMP reg/mem16, reg16 39/ operand with the contents of a 16-bit register.

Compare the contents of a 32-bit register or memory
CMP reg/mem32, reg32 39/ operand with the contents of a 32-bit register.

Compare the contents of a 64-bit register or memory
CMP reg/mem64, reg64 39/ operand with the contents of a 64-bit register.

156 General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

Mnemonic

CMP reg8, reg/mem8
CMP reg16, reg/mem16
CMP reg32, reg/mem32

CMP reg64, reg/mem64

Opcode

3A/r
3B /r
3B /r

3B /r

AMDG64 Technology

Description

Compare the contents of an 8-bit register with the
contents of an 8-bit register or memory operand.

Compare the contents of a 16-bit register with the
contents of a 16-bit register or memory operand.

Compare the contents of a 32-bit register with the
contents of a 32-bit register or memory operand.

Compare the contents of a 64-bit register with the
contents of a 64-bit register or memory operand.

When interpreting operands as unsigned, flag settings are as follows:

Operands CF ZF
dest > source 0 0
dest = source 0 1
dest < source 1 0

When interpreting operands as signed, flag settings are as follows:

Operands OF ZF
dest > source SF 0
dest = source 0 1
dest < source NOT SF 0

Related Instructions

SUB, CMPSx, SCASx

General-Purpose
Instruction Reference

157

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
M M| M| M| M|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 [Protected Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #5S X X non-canonical.
. X X A memory address exceeded a data segment limit or was non-
General protection, canonical.
#GP
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.

158

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

CMPS Compare Strings
CMPSB
CMPSW
CMPSD
CMPSQ

Compares the bytes, words, doublewords, or quadwords pointed to by the rSI and rDI registers, sets or
clears the status flags of the rTFLAGS register to reflect the results, and then increments or decrements
the rSI and rDI registers according to the state of the DF flag in the rFLAGS register. To perform the
comparison, the instruction subtracts the second operand from the first operand and sets the status
flags in the same manner as the SUB instruction, but does not alter the first operand. The two operands
must be the same size.

If the DF flag is 0, the instruction increments rSI and rDI; otherwise, it decrements the pointers. It
increments or decrements the pointers by 1, 2, 4, or 8, depending on the size of the operands.

The forms of the CMPSx instruction with explicit operands address the first operand at seg:[rSI]. The
value of seg defaults to the DS segment, but may be overridden by a segment prefix. These instructions
always address the second operand at ES:[rDI]. ES may not be overridden. The explicit operands serve
only to specify the type (size) of the values being compared and the segment used by the first operand.

The no-operands forms of the instruction use the DS:[rSI] and ES:[rDI] registers to point to the values
to be compared. The mnemonic determines the size of the operands.

Do not confuse this CMPSD instruction with the same-mnemonic CMPSD (compare scalar double-
precision floating-point) instruction in the 128-bit media instruction set. Assemblers can distinguish
the instructions by the number and type of operands.

For block comparisons, the CMPS instruction supports the REPE or REPZ prefixes (they are
synonyms) and the REPNE or REPNZ prefixes (they are synonyms). For details about the REP
prefixes, see “Repeat Prefixes” on page 12. If a conditional jump instruction like JL follows a CMPSx
instruction, the jump occurs if the value of the seg:[rSI] operand is less than the ES:[rDI] operand. This
action allows lexicographical comparisons of string or array elements. A CMPSx instruction can also
operate inside a loop controlled by the LOOPcc instruction.

Mnemonic Opcode Description

A6 Compare the byte at DS:rSlI with the byte at ES:rDI and

CMPS mem8, mem8 then increment or decrement rSl and rDI.

Compare the word at DS:rSl with the word at ES:rDI and
CMPS mem16, mem16 A7 then increment or decrement rSl and rDI.

Compare the doubleword at DS:rSI with the doubleword
CMPS mem32, mem32 A7 at ES:rDl and then increment or decrement rSl and rDI.

Compare the quadword at DS:rSl with the quadword at
CMPS mem64, mem64 A7 ES:rDI and then increment or decrement rSl and rDI.

General-Purpose 159
Instruction Reference

AMDZU

AMDG64 Technology

Mnemonic

CMPSB
CMPSW
CMPSD

CMPSQ

Related Instructions

24594—Rev. 3.32—March 2021

Opcode Description

A6 Compare the byte at DS:rSl with the byte at ES:rDI and
then increment or decrement rSl and rDI.

A7 Compare the word at DS:rSl with the word at ES:rDI and
then increment or decrement rSl and rDI.

A7 Compare the doubleword at DS:rSl| with the doubleword
at ES:rDI and then increment or decrement rSl and rDI.

A7 Compare the quadword at DS:rSl with the quadword at
ES:rDIl and then increment or decrement rSl and rDI.

CMP, SCASx

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL OF |DF | IF | TF | SF | ZF | AF | PF | CF
M M| M| M| M| M

21 1 20 | 19 | 18 | 17 | 16 | 14 13:12 11 110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 |[Protected Cause of Exception
A memory address exceeded the stack segment limit or was

Stack, #55 X X X non-canonical.

i X X X A memory address exceeded a data segment limit or was non-
General protection, canonical.
#GP

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
160 General-Purpose

Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

CMPXCHG Compare and Exchange

Compares the value in the AL, AX, EAX, or RAX register with the value in a register or a memory
location (first operand). If the two values are equal, the instruction copies the value in the second
operand to the first operand and sets the ZF flag in the tFLAGS register to 1. Otherwise, it copies the
value in the first operand to the AL, AX, EAX, or RAX register and clears the ZF flag to 0.

The OF, SF, AF, PF, and CF flags are set to reflect the results of the compare.

When the first operand is a memory operand, CMPXCHG always does a read-modify-write on the
memory operand. If the compared operands were unequal, CMPXCHG writes the same value to the
memory operand that was read.

The forms of the CMPXCHG instruction that write to memory support the LOCK prefix. For details
about the LOCK prefix, see “Lock Prefix” on page 11.

Mnemonic Opcode Description

Compare AL register with an 8-bit register or memory
CMPXCHG reg/mem8, reg8 OF BO /r location. If equal, copy the second operand to the first
operand. Otherwise, copy the first operand to AL.

Compare AX register with a 16-bit register or memory
CMPXCHG reg/mem16, reg16 OF B1 /r location. If equal, copy the second operand to the first
operand. Otherwise, copy the first operand to AX.

Compare EAX register with a 32-bit register or memory
CMPXCHG reg/mem32, reg32 OF B1 /r location. If equal, copy the second operand to the first
operand. Otherwise, copy the first operand to EAX.

Compare RAX register with a 64-bit register or memory
CMPXCHG reg/mem64, reg64 OF B1 /r location. If equal, copy the second operand to the first
operand. Otherwise, copy the first operand to RAX.

Related Instructions

CMPXCHGS8B, CMPXCHGI16B

General-Purpose 161
Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

rFLAGS Affected

ID | VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF

M M M M M M

21 1 20 | 19 | 18 | 17 | 16 | 14 13:12 1110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception

A memory address exceeded the stack segment limit or was

Stack, #5S X X X non-canonical.
A memory address exceeded a data segment limit or was non-

X X X A
. canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, X X An unaligned memory reference was performed while

#AC alignment checking was enabled.

162 General-Purpose

Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
CMPXCHGSB Compare and Exchange Eight Bytes
CMPXCHG16B Compare and Exchange Sixteen Bytes

Compares the value in the rDX:rAX registers with a 64-bit or 128-bit value in the specified memory
location. If the values are equal, the instruction copies the value in the rCX:rBX registers to the
memory location and sets the zero flag (ZF) of the tFLAGS register to 1. Otherwise, it copies the value
in memory to the rDX:rAX registers and clears ZF to 0.

If the effective operand size is 16-bit or 32-bit, the CMPXCHGSB instruction is used. This instruction
uses the EDX:EAX and ECX:EBX register operands and a 64-bit memory operand. If the effective
operand size is 64-bit, the CMPXCHG16B instruction is used; this instruction uses RDX:RAX register
operands and a 128-bit memory operand.

The CMPXCHGS8B and CMPXCHG16B instructions always do a read-modify-write on the memory
operand. If the compared operands were unequal, the instructions write the same value to the memory
operand that was read.

The CMPXCHG8B and CMPXCHGI16B instructions support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

Support for the CMPXCHGS8B and CMPXCHG16B instructions is implementation dependent.
Support for the CMPXCHG8B instruction is indicated by CPUID
Fn0000 0001 EDX[CMPXCHGS8B] or Fn8000 0001 EDX[CMPXCHGS8B] = 1. Support for the
CMPXCHGI16B instruction is indicated by CPUID Fn0000 0001 ECX[CMPXCHG16B]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

The memory operand used by CMPXCHG16B must be 16-byte aligned or else a general-protection
exception is generated.

Mnemonic Opcode Description

Compare EDX:EAX register to 64-bit memory location.
If equal, set the zero flag (ZF) to 1 and copy the

CMPXCHG8B mem64 OF C7/1 m64 ECX:EBX register to the memory location. Otherwise,
copy the memory location to EDX:EAX and clear the
zero flag.

Compare RDX:RAX register to 128-bit memory location.
OF C7 /1 If equal, set the zero flag (ZF) to 1 and copy the

CMPXCHG16B mem128 RCX:RBX register to the memory location. Otherwise,

m128 copy the memory location to RDX:RAX and clear the
zero flag.
Related Instructions
CMPXCHG
General-Purpose 163

Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
M

21 120 |19 |18 |17 |16 | 14 | 1312 |11 |10 | 9 | 8 | 7 | 6 | 4 | 2 | O

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception

CMPXCHGSB instruction is not supported, as indicated by

X X X CPUID Fn0000_0001_EDX[CMPXCHG8B] or

; Fn8000_0001_EDX[CMPXCHGS8B] = 0.
Invalid opcode,
#UD CMPXCHG16B instruction is not supported, as indicated by

CPUID Fn0000_0001_ECX[CMPXCHG16B] = 0.

X X X The operand was a register.
A memory address exceeded the stack segment limit or was

Stack, #5S non-canonical.

X X X A memory address exceeded a data segment limit or was non-

canonical.
General protection, X The destination operand was in a non-writable segment.
#GP X A null data segment was used to reference memory.
X The memory operand for CMPXCHG16B was not aligned on a
16-byte boundary.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.

164

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

CPUID Processor Identification

Provides information about the processor and its capabilities through a number of different functions.
Software should load the number of the CPUID function to execute into the EAX register before
executing the CPUID instruction. The processor returns information in the EAX, EBX, ECX, and
EDX registers; the contents and format of these registers depend on the function.

The architecture supports CPUID information about standard functions and extended functions. The
standard functions have numbers in the 0000 xxxxh series (for example, standard function 1). To
determine the largest standard function number that a processor supports, execute CPUID function 0.

The extended functions have numbers in the 8000 xxxxh series (for example, extended
function 8000 _0001h). To determine the largest extended function number that a processor supports,
execute CPUID extended function 8000 _0000h. If the value returned in EAX is greater than
8000 _0000h, the processor supports extended functions.

Software operating at any privilege level can execute the CPUID instruction to collect this
information. In 64-bit mode, this instruction works the same as in legacy mode except that it zero-
extends 32-bit register results to 64 bits.

CPUID is a serializing instruction.

Mnemonic Opcode Description

Returns information about the processor and its
CPUID OF A2 capabilities. EAX specifies the function number, and the
data is returned in EAX, EBX, ECX, EDX.

Testing for the CPUID Instruction

To avoid an invalid-opcode exception (#UD) on those processor implementations that do not support
the CPUID instruction, software must first test to determine if the CPUID instruction is supported.
Support for the CPUID instruction is indicated by the ability to write the ID bit in the rTFLAGS register.
Normally, 32-bit software uses the PUSHFD and POPFD instructions in an attempt to write
rFLAGS.ID. After reading the updated rFLAGS.ID bit, a comparison determines if the operation
changed its value. If the value changed, the processor executing the code supports the CPUID
instruction. If the value did not change, rFLAGS.ID is not writable, and the processor does not support
the CPUID instruction.

The following code sample shows how to test for the presence of the CPUID instruction using 32-bit
code.

pushfd ; save EFLAGS
pop eax ; store EFLAGS in EAX
mov ebx, eax ; save in EBX for later testing
XOor eax, 00200000h ; toggle bit 21
push eax ; push to stack
popfd ; save changed EAX to EFLAGS
General-Purpose 165

Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

pushfd ; push EFLAGS to TOS

pop eax ; store EFLAGS in EAX

cmp eax, ebx ; see if bit 21 has changed
Jjz NO_CPUID ; if no change, no CPUID

Standard Function 0 and Extended Function 8000_0000h

CPUID standard function 0 loads the EAX register with the largest CPUID standard function number
supported by the processor implementation; similarly, CPUID extended function 8000 0000h loads
the EAX register with the largest extended function number supported.

Standard function 0 and extended function 8000 0000h both load a 12-character string into the EBX,
EDX, and ECX registers identifying the processor vendor. For AMD processors, the string is
AuthenticAMD. This string informs software that it should follow the AMD CPUID definition for
subsequent CPUID function calls. If the function returns another vendor’s string, software must use
that vendor’s CPUID definition when interpreting the results of subsequent CPUID function calls.
Table 3-2 shows the contents of the EBX, EDX, and ECX registers after executing function 0 on an
AMD processor.

Table 3-2. Processor Vendor Return Values

Register Return Value ASCII Characters
EBX 6874_7541h “h t u A”
EDX 6974_6E65h “i t ne”
ECX 444D _4163h “DMA c”

For a description of all feature flags related to instruction subset support, see Appendix D, “Instruction
Subsets and CPUID Feature Flags,” on page 591. For a description of all defined feature numbers and
return values, see Appendix E, “Obtaining Processor Information Via the CPUID Instruction,” on
page 597.

Related Instructions

None

rFLAGS Affected

None

Exceptions

None

166 General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

CRC32 CRC32 Cyclical Redundancy Check

Performs one step of a 32-bit cyclic redundancy check.

The first source, which is also the destination, is a doubleword value in either a 32-bit or 64-bit GPR
depending on the presence of a REX prefix and the value of the REX.W bit. The second source is a
GPR or memory location of width 8, 16, or 32 bits. A vector of width 40, 48, or 64 bits is derived from
the two operands as follows:

1. The low-order 32 bits of the first operand is bit-wise inverted and shifted left by the width of the
second operand.

2. The second operand is bit-wise inverted and shifted left by 32 bits

3. The results of steps 1 and 2 are xored.

This vector is interpreted as a polynomial of degree 40, 48, or 64 over the field of two elements (i.e., bit
i is interpreted as the coefficient of X"). This polynomial is divided by the polynomial of degree 32 that
is similarly represented by the vector I1EDC6F41h. (The division admits an efficient iterative
implementation based on the xor operation.) The remainder is encoded as a 32-bit vector, which is
bit-wise inverted and written to the destination. In the case of a 64-bit destination, the upper 32 bits are
cleared.

In an application of the CRC algorithm, a data block is partitioned into byte, word, or doubleword
segments and CRC32 is executed iteratively, once for each segment.

CRC32 is a SSE4.2 instruction. Support for SSE4.2 instructions is indicated by CPUID
Fn0000 0001 ECX[SSE42]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Instruction Encoding

Mnemonic Encoding Notes
CRC32 reg32, reg/mem8 F2 OF 38 FO /r Perform CRC32 operation on 8-bit values
CRC32 reg32, reg/mem8 F2 REX OF 38 FO /r Enceding using REX prefix allows access to

CRC32 reg32, reg/mem16 F20F 38 F1 /r Effective operand size determines size of second
CRC32 reg32, reg/mem32 F2 OF 38 F1 /r operand.

CRC32 reg64, reg/mem8 F2ZREXWOF 38F0/r REXW=1.
CRC32 regb4, reg/mem64 F2 REXWOF 38F1/r REXW=1.

General-Purpose 167
Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

rFLAGS Affected
None
Exceptions
Mode
Exception Virtual Cause of Exception
Real| 8086 [Protected
i X X X Lock prefix used
Invalid opcode, - - —
#UD X X X SSE42 instructions are not supported as indicated by CPUID
Fn0000_0001_ECX[SSE42] = 0.
A memory address exceeded the stack segment limit or was
Stack, #55 X X X non-canonical.
A memory address exceeded a data segment limit or was non-
X X X A
. canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.
168 General-Purpose

Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

DAA Decimal Adjust after Addition

Adjusts the value in the AL register into a packed BCD result and sets the CF and AF flags in the
rFLAGS register to indicate a decimal carry out of either nibble of AL.

Use this instruction to adjust the result of a byte ADD instruction that performed the binary addition of
one 2-digit packed BCD values to another.

The instruction performs the adjustment by adding 06h to AL if the lower nibble is greater than 9 or if
AF = 1. Then 60h is added to AL if the original AL was greater than 99h or if CF = 1.

If the lower nibble of AL was adjusted, the AF flag is set to 1. Otherwise AF is not modified. If the
upper nibble of AL was adjusted, the CF flag is set to 1. Otherwise, CF is not modified. SF, ZF, and PF
are set according to the final value of AL.

Using this instruction in 64-bit mode generates an invalid-opcode (#UD) exception.

Mnemonic Opcode Description

Decimal adjust AL.
DAA 27 (Invalid in 64-bit mode.)

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U M M M M M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 1 110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
E&’Sﬁd opcode, X This instruction was executed in 64-bit mode.
General-Purpose 169

Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

DAS Decimal Adjust after Subtraction

Adjusts the value in the AL register into a packed BCD result and sets the CF and AF flags in the
rFLAGS register to indicate a decimal borrow.

Use this instruction to adjust the result of a byte SUB instruction that performed a binary subtraction of
one 2-digit, packed BCD value from another.

This instruction performs the adjustment by subtracting 06h from AL if the lower nibble is greater than
9 or if AF = 1. Then 60h is subtracted from AL if the original AL was greater than 99h or if CF = 1.

If the adjustment changes the lower nibble of AL, the AF flag is set to 1; otherwise AF is not modified.
If the adjustment results in a borrow for either nibble of AL, the CF flag is set to 1; otherwise CF is not
modified. The SF, ZF, and PF flags are set according to the final value of AL.

Using this instruction in 64-bit mode generates an invalid-opcode (#UD) exception.

Mnemonic Opcode Description

Decimal adjusts AL after subtraction.
DAS 2F (Invalid in 64-bit mode.)

Related Instructions

DAA

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U M M M M M
21 120 | 19 | 18 | 17 | 16 | 14 13:12 1110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
g‘dgﬁd opcode, X This instruction was executed in 64-bit mode.
170 General-Purpose

Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

DEC Decrement by 1

Subtracts 1 from the specified register or memory location. The CF flag is not affected.

The one-byte forms of this instruction (opcodes 48 through 4F) are used as REX prefixes in 64-bit
mode. See “REX Prefix” on page 14.

The forms of the DEC instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

To perform a decrement operation that updates the CF flag, use a SUB instruction with an immediate
operand of 1.

Mnemonic Opcode Description
DEC reg/mem8 FE /1 Ilg(e;gﬁaornir;lt %r.\e contents of an 8-bit register or memory
DEC reg/mem16 FF /1 Bczg:ﬁm%}t ’;he contents of a 16-bit register or memory
DEC reg/mem32 FF /1 E’gg;i%nr:ebr;t ’;r.\e contents of a 32-bit register or memory
DEC reg/mem64 FF /1 ng{%n%r;’t %t.\e contents of a 64-bit register or memory
toons ReTeTet e conlens o s ot egory 1
DEC reg32 48 +rd Decrement the contents of a 32-bit register by 1.

(See “REX Prefix” on page 14.)
Related Instructions
INC, SUB

rFLAGS Affected

ID | VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF

M M M M M

21120 | 19 | 18 | 17 | 16 | 14 13:12 1 | 10 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

General-Purpose 171
Instruction Reference

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021
Exceptions
Virtual
Exception Real| 8086 [Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was

non-canonical.

A memory address exceeded the data segment limit or was

. X X X non-canonical.
General protection,
#GP X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
172 General-Purpose

Instruction Reference

AMDZ\
AMDG64 Technology

24594—Rev. 3.32—March 2021

DIV

Divides the unsigned value in a register by the unsigned value in the specified register or memory
location. The register to be divided depends on the size of the divisor.

Unsigned Divide

When dividing a word, the dividend is in the AX register. The instruction stores the quotient in the AL
register and the remainder in the AH register.

When dividing a doubleword, quadword, or double quadword, the most-significant word of the
dividend is in the rDX register and the least-significant word is in the rAX register. After the division,
the instruction stores the quotient in the rAX register and the remainder in the rDX register.

The following table summarizes the action of this instruction:

Division Size Dividend Divisor Quotient | Remainder Maximum Quotient
Word/byte AX reg/mems3 AL AH 255
Doubleword/word DX:AX reg/mem16 AX DX 65,535
Quadword/doubleword | EDX:EAX | reg/mem32 EAX EDX 232_1
Double quadword/ . 64
quadword RDX:RAX reg/mem64 RAX RDX 2% -1

The instruction truncates non-integral results towards 0 and the remainder is always less than the
divisor. An overflow generates a #DE (divide error) exception, rather than setting the CF flag.

Division by zero generates a divide-by-zero exception.

Mnemonic Opcode Description

Perform unsigned division of AX by the contents of an 8-
bit register or memory location and store the quotient in
AL and the remainder in AH.

DIV reg/mem8 F6 /6

Perform unsigned division of DX:AX by the contents of a
16-bit register or memory operand store the quotient in
AX and the remainder in DX.

Perform unsigned division of EDX:EAX by the contents
of a 32-bit register or memory location and store the
quotient in EAX and the remainder in EDX.

DIV reg/mem16 F7 /6

DIV reg/mem32 F7 /6

Perform unsigned division of RDX:RAX by the contents
of a 64-bit register or memory location and store the
quotient in RAX and the remainder in RDX.

DIV reg/mem64 F7 /6

Related Instructions

MUL

General-Purpose 173

Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
u Uujlujujuj|u

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
. X X The divisor operand was 0.
Divide by zero, #DE - . .
X X The quotient was too large for the designated register.
A memory address exceeded the stack segment limit or was
Stack, #3S X X non-canonical.
i X X A memory address exceeded a data segment limit or was non-

General protection, canonical.

#GP

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while

#AC alignment checking was enabled.

174

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

ENTER Create Procedure Stack Frame

Creates a stack frame for a procedure.
The first operand specifies the size of the stack frame allocated by the instruction.

The second operand specifies the nesting level (0 to 31—the value is automatically masked to 5 bits).
For nesting levels of 1 or greater, the processor copies earlier stack frame pointers before adjusting the
stack pointer. This action provides a called procedure with access points to other nested stack frames.

The 32-bitenter N, 0 (a nesting level of 0) instruction is equivalent to the following 32-bit
instruction sequence:

push ebp ; save current EBP
mov ebp, esp ; set stack frame pointer wvalue
sub esp, N ; allocate space for local variables

The ENTER and LEAVE instructions provide support for block structured languages. The LEAVE
instruction releases the stack frame on returning from a procedure.

In 64-bit mode, the operand size of ENTER defaults to 64 bits, and there is no prefix available for
encoding a 32-bit operand size.

Mnemonic Opcode Description
ENTER imm16, 0 C8 iw 00 Create a procedure stack frame.
ENTER imm16, 1 C8 iw 01 Create a nested stack frame for a procedure.
ENTER imm16, imm8 C8iwib Create a nested stack frame for a procedure.
Action

// See “Pseudocode Definition” on page 57.
ENTER START:

temp ALLOC SPACE = word-sized immediate specified in the instruction

(first operand), zero-extended to 64 bits
temp LEVEL = byte-sized immediate specified in the instruction
(second operand), zero-extended to 64 bits

temp LEVEL

temp LEVEL AND Ox1f
// only keep 5 bits of level count

PUSH.v old RBP

temp RBP = RSP // This value of RSP will eventually be loaded
// into RBP.
IF (temp LEVEL>O0) // Push "temp LEVEL" parameters to the stack.

{
FOR (I=1; I<temp LEVEL; I++)

General-Purpose 175
Instruction Reference

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021

write

// All but one of the parameters are copied
// from higher up on the stack.

temp DATA = READ MEM.v [SS:old RBP-I*V]
PUSH.v temp DATA
}
PUSH.v temp RBP // The last parameter is the offset of the old
// value of RSP on the stack.
}
RSP.s = RSP - temp ALLOC SPACE // Leave "temp ALLOC SPACE" free bytes on
// the stack

WRITE MEM.v [SS:RSP.s] = temp_ unused // ENTER finishes with a memory

// check on the final stack pointer,
// but no write actually occurs.

RBP.v = temp RBP
EXIT

Related Instructions

LEAVE
rFLAGS Affected
None
Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
A memory address exceeded the stack-segment limit or was
Stack, #5S X X X non-canonical.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
176 General-Purpose

Instruction Reference

AMDZ\
AMDG64 Technology

24594—Rev. 3.32—March 2021

IDIV Signed Divide

Divides the signed value in a register by the signed value in the specified register or memory location.
The register to be divided depends on the size of the divisor.

When dividing a word, the dividend is in the AX register. The instruction stores the quotient in the AL
register and the remainder in the AH register.

When dividing a doubleword, quadword, or double quadword, the most-significant word of the
dividend is in the rDX register and the least-significant word is in the rAX register. After the division,
the instruction stores the quotient in the rAX register and the remainder in the rDX register.

The following table summarizes the action of this instruction:

Division Size Dividend Divisor Quotient | Remainder Quotient Range
Word/byte AX reg/mem8 AL AH —128 to +127
Doubleword/word DX:AX reg/mem16 AX DX -32,768 to +32,767
Quadword/doubleword | EDX:EAX | reg/mem32 EAX EDX 2302311
Double quadword/ . 63 63
quadword RDX:RAX | reg/mem64 RAX RDX -2 °°t0 2°°-1

The instruction truncates non-integral results towards 0. The sign of the remainder is always the same
as the sign of the dividend, and the absolute value of the remainder is less than the absolute value of the
divisor. An overflow generates a #DE (divide error) exception, rather than setting the OF flag.

To avoid overflow problems, precede this instruction with a CBW, CWD, CDQ, or CQO instruction to
sign-extend the dividend.

Mnemonic Opcode Description

Perform signed division of AX by the contents of an 8-bit
register or memory location and store the quotient in AL
and the remainder in AH.

IDIV reg/mem8 F6 /7

Perform signed division of DX:AX by the contents of a
16-bit register or memory location and store the quotient
in AX and the remainder in DX.

IDIV reg/mem16 F7 17

Perform signed division of EDX:EAX by the contents of
a 32-bit register or memory location and store the
quotient in EAX and the remainder in EDX.

Perform signed division of RDX:RAX by the contents of
a 64-bit register or memory location and store the
quotient in RAX and the remainder in RDX.

IDIV reg/mem32 F7 17

IDIV reg/mem64 F7 17

General-Purpose 177

Instruction Reference

AMDZU

AMDG64 Technology

Related Instructions

24594—Rev. 3.32—March 2021

IMUL

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
u u U u U u

21 | 20| 19 | 18 | 17 | 16 | 14 13:12 11 |10 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 |[Protected Cause of Exception
. X X The divisor operand was 0.
Divide by zero, #DE - . :
X X The quotient was too large for the designated register.
A memory address exceeded the stack segment limit or was
Stack, #55 X X non-canonical.
i X X A memory address exceeded a data segment limit or was non-

General protection, canonical.

#GP

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while

#AC alignment checking was enabled.

178

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

IMUL Signed Multiply

Multiplies two signed operands. The number of operands determines the form of the instruction.

If a single operand is specified, the instruction multiplies the value in the specified general-purpose
register or memory location by the value in the AL, AX, EAX, or RAX register (depending on the
operand size) and stores the product in AX, DX:AX, EDX:EAX, or RDX:RAX, respectively.

If two operands are specified, the instruction multiplies the value in a general-purpose register (first
operand) by an immediate value or the value in a general-purpose register or memory location (second
operand) and stores the product in the first operand location.

If three operands are specified, the instruction multiplies the value in a general-purpose register or
memory location (second operand), by an immediate value (third operand) and stores the product in a
register (first operand).

The IMUL instruction sign-extends an immediate operand to the length of the other register/memory
operand.

The CF and OF flags are set if, due to integer overflow, the double-width multiplication result cannot
be represented in the half-width destination register. Otherwise the CF and OF flags are cleared.

Mnemonic Opcode Description

Multiply the contents of AL by the contents of an 8-bit
IMUL reg/mem8 F6 /5 memory or register operand and put the signed result in
AX.

Multiply the contents of AX by the contents of a 16-bit
IMUL reg/mem16 F7 /5 memory or register operand and put the signed result in
DX:AX.

Multiply the contents of EAX by the contents of a 32-bit
IMUL reg/mem32 F7 /5 memory or register operand and put the signed result in
EDX:EAX.

Multiply the contents of RAX by the contents of a 64-bit
IMUL reg/mem64 F7175 memory or register operand and put the signed result in
RDX:RAX.

Multiply the contents of a 16-bit destination register by
IMUL reg16, reg/mem16 OF AF /r the contents of a 16-bit register or memory operand and
put the signed result in the 16-bit destination register.

Multiply the contents of a 32-bit destination register by
IMUL reg32, reg/mem32 OF AF /r the contents of a 32-bit register or memory operand and
put the signed result in the 32-bit destination register.

Multiply the contents of a 64-bit destination register by
IMUL reg64, reg/mem64 OF AF /r the contents of a 64-bit register or memory operand and
put the signed result in the 64-bit destination register.

Multiply the contents of a 16-bit register or memory
IMUL reg16, reg/mem16, imm8 6B /rib operand by a sign-extended immediate byte and put the
signed result in the 16-bit destination register.

General-Purpose 179
Instruction Reference

AMDZU

AMDG64 Technology

Mnemonic

IMUL reg32, reg/mem32, imm8

IMUL reg64, reg/mem64, imm8

IMUL reg16, reg/mem16,
imm16

IMUL reg32, reg/mem32,
imm32

IMUL reg64, reg/mem64,
imm32

Related Instructions

Opcode

6B /rib

6B /rib

69 /riw

69 /rid

69 /rid

24594—Rev. 3.32—March 2021

Description

Multiply the contents of a 32-bit register or memory
operand by a sign-extended immediate byte and put the
signed result in the 32-bit destination register.

Multiply the contents of a 64-bit register or memory
operand by a sign-extended immediate byte and put the
signed result in the 64-bit destination register.

Multiply the contents of a 16-bit register or memory
operand by a sign-extended immediate word and put
the signed result in the 16-bit destination register.

Multiply the contents of a 32-bit register or memory
operand by a sign-extended immediate double and put
the signed result in the 32-bit destination register.

Multiply the contents of a 64-bit register or memory
operand by a sign-extended immediate double and put
the signed result in the 64-bit destination register.

IDIV

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL OF |DF | IF | TF | SF | ZF | AF | PF | CF
M u U u Uu | M

21 1 20 | 19 | 18 | 17 | 16 | 14 13:12 11 110 | 9 8 7 6 4 2 0

Undefined flags are U.

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. Aflag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #55 X X X non-canonical.
i X X X A memory address exceeded a data segment limit or was non-

General protection, canonical.

#GP

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while

#AC alignment checking was enabled.

180 General-Purpose

Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

IN Input from Port

Transfers a byte, word, or doubleword from an I/O port to the AL, AX, or EAX register. The port
address is specified either by an 8-bit immediate value (00h to FFh) encoded in the instruction or a 16-
bit value contained in the DX register (0000h to FFFFh). The processor’s I/O address space is distinct
from system memory addressing.

For two opcodes (E4h and ECh), the data size of the port is fixed at 8 bits. For the other opcodes (ESh
and EDh), the effective operand-size determines the port size. If the effective operand size is 64 bits,
IN reads only 32 bits from the I/O port.

If the CPL is higher than IOPL, or the mode is virtual mode, IN checks the I/O permission bitmap in
the TSS before allowing access to the I/O port. (See Volume 2 for details on the TSS I/O permission
bitmap.)

Mnemonic Opcode Description

. . Input a byte from the port at the address specified by
INAL, imm8 E4ib imm8 and put it into the AL register.

Input a word from the port at the address specified by

INAX, imm3 E5 b imm8 and put it into the AX register.
. . Input a doubleword from the port at the address
IN EAX, imm8 ES ib specified by imm8 and put it into the EAX register.
Input a byte from the port at the address specified by the
INAL, DX EC DX register and put it into the AL register.
Input a word from the port at the address specified by
IN AX, DX ED the DX register and put it into the AX register.
Input a doubleword from the port at the address
IN EAX, DX ED specified by the DX register and put it into the EAX
register.
Related Instructions
INSx, OUT, OUTSx
rFLAGS Affected
None
General-Purpose 181

Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
X One or more /O permission bits were set in the TSS for the

General protection, accessed port.
#GP X The CPL was greater than the IOPL and one or more 1/0

permission bits were set in the TSS for the accessed port.
Page fault, #PF X X A page fault resulted from the execution of the instruction.

182

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

INC Increment by 1

Adds 1 to the specified register or memory location. The CF flag is not affected, even if the operand is
incremented to 0000.

The one-byte forms of this instruction (opcodes 40 through 47) are used as REX prefixes in 64-bit
mode. See “REX Prefix” on page 14.

The forms of the INC instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

To perform an increment operation that updates the CF flag, use an ADD instruction with an
immediate operand of 1.

Mnemonic Opcode Description
INC reg/mem8 FE /0 :gg;?irgr?rgtytq.e contents of an 8-bit register or memory
INC reg/mem16 FF /O Ilggg?i@ﬁrgtytqta contents of a 16-bit register or memory
INC reg/mem32 FF /0 :gg;?irgﬁrgtytq.e contents of a 32-bit register or memory
INC reg/mem64 FF /0 :Qg;?ir:r?gtytq.e contents of a 64-bit register or memory

Increment the contents of a 16-bit register by 1.

INC reg16 40 +w (These opcodes are used as REX prefixes in 64-bit
mode. See “REX Prefix” on page 14.)

Increment the contents of a 32-bit register by 1.

INC reg32 40 +rd (These opcodes are used as REX prefixes in 64-bit
mode. See “REX Prefix” on page 14.)

Related Instructions

ADD, DEC

General-Purpose 183
Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
M M| M| M| M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception

A memory address exceeded the stack segment limit or was
Stack, #5S X X X non-canonical.

A memory address exceeded a data segment limit or was non-

X X X A
. canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.

184

General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
INS Input String
INSB
INSW
INSD

Transfers data from the I/O port specified in the DX register to an input buffer specified in the rDI
register and increments or decrements the rDI register according to the setting of the DF flag in the
rFLAGS register.

If the DF flag is 0, the instruction increments rDI by 1, 2, or 4, depending on the number of bytes read.
If the DF flag is 1, it decrements the pointer by 1, 2, or 4.

In 16-bit and 32-bit mode, the INS instruction always uses ES as the data segment. The ES segment
cannot be overridden with a segment override prefix. In 64-bit mode, INS always uses the
unsegmented memory space.

The INS instructions use the explicit memory operand (first operand) to determine the size of the I/O
port, but always use ES:[rDI] for the location of the input buffer. The explicit register operand (second
operand) specifies the I/O port address and must always be DX.

The INSB, INSW, and INSD instructions copy byte, word, and doubleword data, respectively, from
the I/O port (0000h to FFFFh) specified in the DX register to the input buffer specified in the ES:rDI
registers.

If the operand size is 64-bits, the instruction behaves as if the operand size were 32-bits.

If the CPL is higher than the IOPL or the mode is virtual mode, INSx checks the I/O permission bitmap
in the TSS before allowing access to the I/O port. (See volume 2 for details on the TSS I/O permission
bitmap.)

The INSx instructions support the REP prefix for block input of rCX bytes, words, or doublewords.
For details about the REP prefix, see “Repeat Prefixes” on page 12.

Mnemonic Opcode Description

Input a byte from the port specified by DX, put it into the
INS mem8, DX 6C memory location specified in ES:rDlI, and then
increment or decrement rDI.

Input a word from the port specified by DX register, put it
INS mem16, DX 6D into the memory location specified in ES:rDl, and then
increment or decrement rDI.

Input a doubleword from the port specified by DX, put it
INS mem32, DX 6D into the memory location specified in ES:rDl, and then
increment or decrement rDI.

Input a byte from the port specified by DX, put it into the
INSB 6C memory location specified in ES:rDI, and then
increment or decrement rDI.

General-Purpose 185
Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

Mnemonic Opcode Description
Input a word from the port specified by DX, put it into the
INSW 6D memory location specified in ES:rDlI, and then
increment or decrement rDI.
Input a doubleword from the port specified by DX, put it
INSD 6D into the memory location specified in ES:rDI, and then
increment or decrement rDI.
Related Instructions
IN, OUT, OUTSx
rFLAGS Affected
None
Exceptions
Virtual
Exception Real| 8086 [Protected Cause of Exception
X X X A memory address exceeded a data segment limit or was non-
canonical.
X One or more /O permission bits were set in the TSS for the
. accessed port.
General protection,
#GP X The CPL was greater than the IOPL and one or more 1/0O
permission bits were set in the TSS for the accessed port.
X A null data segment was used to reference memory.
X The destination operand was in a non-writable segment.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while

#AC

alignment checking was enabled.

186

General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

INT

AMDG64 Technology

Interrupt to Vector

Transfers execution to the interrupt handler specified by an 8-bit unsigned immediate value. This value
is an interrupt vector number (00h to FFh), which the processor uses as an index into the interrupt-
descriptor table (IDT).

For detailed descriptions of the steps performed by INT# instructions, see the following:

Legacy-Mode Interrupts: “Virtual-8086 Mode Interrupt Control Transfers” in Volume 2.
Long-Mode Interrupts: “Long-Mode Interrupt Control Transfers” in Volume 2.

See also the descriptions of the INT3 instruction on page 367 and the INTO instruction on page 189.

Mnemonic Opcode Description
. ; Call interrupt service routine specified by interrupt
INT imm8 CDib vector imm8.
Action

// For functions READ IDT, READ DESCRIPTOR, READ INNER LEVEL SP,

// ShadowStacksEnabled and SET TOKEN BUSY see "Pseudocode Definition"
// on page 57

INT N START:

IF (REAL_MODE)

INT N REAL // INTn real mode
ELSEIF (PROTECTED MODE)

INT N PROTECTED // INTn protected mode
ELSE // (VIRTUAL MODE)

INT N VIRTUAL // INTn virtual mode
INT N REAL:

temp int n vector = byte-sized interrupt vector specified in
the instruction, zero-extended to 64 bits

// read target CS:RIP from the real-mode IDT
temp RIP = READ MEM.w [idt:temp int n vector*4]
temp CS = READ MEM.w [idt:temp int n vector*4+2]

PUSH.w old_RFLAGS
PUSH.w old_CS
PUSH.w next RIP

IF (temp RIP > CS.limit)
EXCEPTION [#GP (0)]

CS.sel = temp CS
CS.base temp CS SHL 4

General-Purpose
Instruction Reference

187

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021

RFLAGS.AC,TF,IF,RF cleared

RIP =

EXIT

temp RIP

INT N PROTECTED:

temp

temp

int n vector = byte-sized interrupt vector specified in
the instruction, zero-extended to 64 bits
idt desc = READ IDT (temp_int n vector)

IF (temp_idt desc.attr.type == ’taskgate’)

TA

// Th
IF (L

v
ELSEI

ELSE

temp

IF (L
{
te
te
}

Cs =

IF (C
te
ELSE
te

IF (C
{
te

SK_SWITCH // using TSS selector in the task gate as the target TSS

e size of the gate controls the size of the stack pushes
ONG_MODE)
= 8-byte // Long mode only uses 64-bit gates
F ((temp_idt desc.attr.type == ’'intgate32’) ||
(temp idt desc.attr.type == ’'trapgate32’))
= 4-byte // Legacy mode, using a 32-bit gate

= 2-byte // Legacy mode, using a 16-bit gate

RIP = temp idt desc.offset

ONG_MODE) // In long mode, read 2nd half of 16-byte interrupt-gate
// from the IDT to get the upper 32 bits of target RIP

mp_upper = READ MEM.q [idt:temp int n vector*16+8]
mp RIP = temp RIP + (temp upper SHL 32) // form 64-bit target RIP

READ DESCRIPTOR (temp idt desc.segment, intcs_chk)

S.attr.conforming == 1)
mp CPL = CPL

mp CPL = CS.attr.dpl
PL == temp CPL) // no privilege-level change

mp_CheckToken = FALSE

IF (LONG_MODE)

{
IF (temp_idt desc.ist != 0)
{
// IDT gate IST is non-zero, do stack switch
RSP = READ MEM.q [tss:ist index*8+28] // fetch new RSP
RSP = RSP AND OxFFFFFFFFFFFFFFFO // ensure 1l6-byte alignment

// fetch SSP from ISST if sstk enabled at current privilege

188

General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

IF
{
temp isst addr =
SSP =
IF (SSP[2:0] != 0)

EXCEPTION [#GP(0)]

temp CheckToken = TRUE
}

// new

}
PUSH.g old SS
PUSH.g old RSP
} // end long mode

// in long mode,

PUSH.v old RFLAGS
PUSH.v old CS
PUSH.v next RIP
IF (ShadowStacksEnabled (current CPL))

{
IF

(temp_ CheckToken TRUE)
SET SSTK_TOKEN BUSY (SSP)
Align SSP to next 8B boundary,

//

storing

SSTK WRITE MEM.q [SSP-24] = old CS //
SSTK WRITE MEM.q [SSP-16] = (CS.base +
SSTK WRITE MEM.q [SSP-8] = old SSP

SSP = SSP - 24
} // end shadow stacks enabled @ CPL

INTERRUPT SSP TABLE ADDR +
READ MEM.q [tss:temp isst

AMDG64 Technology

(ShadowStacksEnabled (current CPL))

(temp idt desc.ist*8)
addr]

SSP must be 8-byte aligned

save old SS:RSP to stack

vaidate token, set busy

4B of 0 if needed

push CS,LIP,SSP to shadow stack
old RIP)

IF ((64BIT _MODE) && (temp RIP is non-canonical) ||
(!64BIT MODE) && (temp RIP > CS.limit))
EXCEPTION [#GP (0)]

RFLAGS.VM,NT, TF,RF cleared
RFLAGS.IF cleared if interrupt gate

RIP = temp RIP

EXTIT

} // end of INTn to same privilege level
ELSE // INTn to more privileged level

{

// (CPL > temp CPL),

CPL = temp CPL
temp SS desc:temp RSP =

IF (LONG_MODE)
temp RSP = temp RSP AND OxFFFFFFFFFFFFFFFQ
RSP = temp RSP
SS = temp_ SS desc
IF (ShadowStacksEnabled (new CPL))
{
old Ssp = SSPp

READ INNER LEVEL SP (CPL,

changing privilege so get inner level SS:RSP

temp idt desc.ist)

// force 1l6-byte alignment

General-Purpose
Instruction Reference

189

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

IF ((temp idt desc.ist == 0) || (!LONG MODE))
SSP = PLn_SSP // where n=new CPL
ELSEIF ((temp idt desc.ist = 0) && (LONG_MODE))
{
temp isst addr = INTERRUPT SSP TABLE ADDR + (temp idt desc.ist*8)
SSP = READ MEM.q [tss:temp isst addr]
}
IF (SSP[2:0] !'= 0) // new SSP must be 8-byte aligned
EXCEPTION [#GP(0)]

// Any #SS from the following pushes uses SS.sel as error code
PUSH.v old_SS

PUSH.v old RSP

PUSH.v old RFLAGS

PUSH.v old CS

PUSH.v next RIP

IF ((ShadowStacksEnabled(CPL 3) && (old CPL == 3))
PL3 SSP = SSP

IF (ShadowStacksEnabled (new CPL))

{
old SSP = SSP

SSP = PLn_SSP // where n=new CPL

SET SSTK TOKEN BUSY (SSP) // validate token, set busy

IF (old CPL != 3)
SSTK_WRITE MEM.q [SSP-24] = old CS // push CS, LIP, SSP
SSTK_WRITE MEM.q [SSP-16] = LIP // onto the shadow stack
SSTK_WRITE MEM.q [SSP-8] = old SSP

SSP = SSP - 24
} // end shadow stacks enabled at new CPL

IF ((64BIT_MODE) && (temp RIP is non-canonical) ||
(!64BIT MODE) && (temp RIP > CS.limit))
EXCEPTION [#GP (0)]

RFLAGS.VM,NT, TF,RF cleared
RFLAGS.IF cleared if interrupt gate
RIP = temp RIP

EXTIT

} end INTn to more privileged level

INT N _VIRTUAL:

temp int n vector = byte-sized interrupt vector specified in
the instruction, zero-extended to 64 bits

IF (CR4.VME == 0) // VME isn’t enabled
IF (RFLAGS.IOPL == 3)

190 General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

INT N VIRTUAL TO PROTECTED
ELSE
EXCEPTION [#GP(0)]

temp IRB BASE = READ MEM.w [tss:102] - 32

// Check the VME Interrupt Redirection Bitmap (IRB) to
// see if we should redirect to a virtual-mode handler
temp VME REDIRECTION = READ BIT ARRAY ([tss:temp IRB BASE], temp int n vector)
IF (temp_VME_REDIRECTION == 1)
{ // continue with transition to protected mode
IF (RFLAGS.IOPL==3)
INT N VIRTUAL TO PROTECTED
ELSE
EXCEPTION [#GP(0)]
}
ELSE
{ // INTn stays in virtual mode
// redirect interrupt through virtual-mode IDT
temp RIP = READ MEM.w [O:temp int n vector*4]
// read target CS:RIP from the virtual-mode IDT at linear address O
temp CS = READ MEM.w [O:temp int n vector*4+2]
IF (RFLAGS.IOPL < 3)
old RFLAGS = old RFLAGS with VIF bit shifted into IF bit, and IOPL = 3
PUSH.w old RFLAGS
PUSH.w old CS
PUSH.w next RIP
CS.sel = temp CS
CS.base = temp CS SHL 4
RFLAGS.TF,RF = 0
IF (RFLAGS.IOPL == 3)
RFLAGS.IF = 0
ELSE
RFLAGS.VIF = 0
RIP = temp RIP
EXTIT
}

INT N VIRTUAL TO PROTECTED:

temp idt desc = READ IDT (temp int n vector)
IF (temp_idt desc.attr.type == ’taskgate’)
TASK SWITCH // using tss selector in the task gate as the target tss

// The size of the gate controls the size of the stack pushes
IF ((temp idt desc.attr.type == 'intgate32’) ||
(temp_idt desc.attr.type == ’trapgate32’))

v = 4-byte // legacy mode, using a 32-bit gate

ELSE // gate is intgatel6 or trapgatel6

v = 2-byte // legacy mode, using a 16-bit gate

General-Purpose 191
Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

temp RIP = temp idt desc.offset
old CPL = CPL
CS = READ DESCRIPTOR (temp idt desc.segment, intcs_chk)

IF (CS.attr.dpl !'=0) // Handler must run at CPL O.
EXCEPTION [#GP(CS.sel)]

CPL =0

temp ist = 0 // Legacy mode doesn’t use IST pointers
temp SS desc:temp RSP = READ INNER LEVEL SP(CPL, temp ist)

RSP = temp RSP

SS = temp SS desc

// Any #SS from the following pushes uses SS.sel as error code

PUSH.v old GS

PUSH.v old FS

PUSH.v old DS

PUSH.v old ES

PUSH.v old_SS

PUSH.v old RSP

PUSH.v old_RFLAGS // Pushed with RF = 0
PUSH.v old CS

PUSH.v next RIP

IF (temp RIP > CS.limit)
EXCEPTION [#GP(0)]

DS NULL // can’t use virtual-mode selectors in protected mode
ES = NULL // can’t use virtual-mode selectors in protected mode
FS NULL // can’t use virtual-mode selectors in protected mode
GS = NULL // can’t use virtual-mode selectors in protected mode
RFLAGS.VM,NT, TF,RF cleared

RFLAGS.IF cleared if interrupt gate

RIP = temp RIP

IF (ShadowStacksEnabled (CPL 0))

{
old_SSP = SSP

SSP = PLO_SSP // fetch new SSP
SET_SSTK_TOKEN_BUSY (SSP) // vaidate token, set busy
IF (old CPL) != 3

{

SSTK_WRITE MEM [SSP-24] = old CS // push CS, LIP, SSP

-q
SSTK_WRITE MEM.q [SSP-16] = LIP // onto the shadow stack
SSTK_WRITE MEM.q [SSP-8] old SSP

SSP = SSP - 24

}

EXIT // end INTn VIRTUAL TO PROTECTED

192 General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

Related Instructions

INT 3, INTO, BOUND

rFLAGS Affected

If a task switch occurs, all flags are modified. Otherwise settings are as follows:

ID | VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF

M M M 0 M M 0

21 1 20 | 19 | 18 | 17 | 16 | 14 13:12 1 110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
X X As part of a stack switch, the target stack segment selector or
rSP in the TSS was beyond the TSS limit.
X X As part of a stack switch, the target stack segment selector in
the TSS was a null selector.
X X As part of a stack switch, the target stack segment selector’s
Tl bit was set, but the LDT selector was a null selector.
As part of a stack switch, the target stack segment selector in
Invalid TSS, #TS X X the TSS was beyond the limit of the GDT or LDT descriptor
(selector) table.
X X As part of a stack switch, the target stack segment selector in

the TSS contained a RPL that was not equal to its DPL.

As part of a stack switch, the target stack segment selector in
X X the TSS contained a DPL that was not equal to the CPL of the
code segment selector.

X X As part of a stack switch, the target stack segment selector in
the TSS was not a writable segment.

gr%%rgﬁtm#?\log, X X The accessed code segment, interrupt gate, trap gate, task

gate, or TSS was not present.

(selector)
A memory address exceeded the stack segment limit or was
Stack, #SS X X X non-canonical, and no stack switch occurred.
X X After a stack switch, a memory address exceeded the stack
segment limit or was non-canonical.
Stack, #SS - - -
(selector) As part of a stack switch, the SS register was loaded with a
X X non-null segment selector and the segment was marked not
present.
General-Purpose 193

Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

Virtual
Exception Real| 8086 |Protected Cause of Exception
X X X A memory address exceeded a data segment limit or was non-
canonical.
X X X The target offset exceeded the code segment limit or was non-
General protection, canonical.
#GP X The IOPL was less than 3 and CR4.VME was 0.
IOPL was less than 3, CR4.VME was 1, and the
X corresponding bit in the VME interrupt redirection bitmap was
1.
X X X The interrupt vector was beyond the limit of IDT.
The descriptor in the IDT was not an interrupt, trap, or task
X X gate in legacy mode or not a 64-bit interrupt or trap gate in
long mode.
X X The DPL of the interrupt, trap, or task gate descriptor was less
than the CPL.
X X The segment selector specified by the interrupt or trap gate
General protection, had its T bit set, but the LDT selector was a null selector.
#GP X X The segment descriptor specified by the interrupt or trap gate
(selector) exceeded the descriptor table limit or was a null selector.
The segment descriptor specified by the interrupt or trap gate
X X was not a code segment in legacy mode, or not a 64-bit code
segment in long mode.
X The DPL of the segment specified by the interrupt or trap gate
was greater than the CPL.
The DPL of the segment specified by the interrupt or trap gate
pointed was not 0 or it was a conforming segment.
Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check,
#AC

An unaligned memory reference was performed while
alignment checking was enabled.

194

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

INTO Interrupt to Overflow Vector

Checks the overflow flag (OF) in the rFLAGS register and calls the overflow exception (#OF) handler
if the OF flag is set to 1. This instruction has no effect if the OF flag is cleared to 0. The INTO
instruction detects overflow in signed number addition. See AMD64 Architecture Programmer’s
Manual Volume 1: Application Programming for more information on the OF flag.

Using this instruction in 64-bit mode generates an invalid-opcode exception.

For detailed descriptions of the steps performed by INT instructions, see the following:

e Legacy-Mode Interrupts: “Legacy Protected-Mode Interrupt Control Transfers” in Volume 2.
e Long-Mode Interrupts: “Long-Mode Interrupt Control Transfers” in Volume 2.

Mnemonic Opcode Description

Call overflow exception if the overflow flag is set.
INTO CE (Invalid in 64-bit mode.)

Action
IF (64BIT_MODE)
EXCEPTION[#UD]
IF (RFLAGS.OF == 1) // #OF is a trap, and pushes the rIP of the instruction
EXCEPTION [#OF] // following INTO.
EXIT

Related Instructions

INT, INT 3, BOUND

rFLAGS Affected

None.

Exceptions

Virtual
Exception Real| 8086 |Protected Cause of Exception

Overflow, #0OF X X X The INTO instruction was executed with OF set to 1.

Invalid opcode, X

#UD Instruction was executed in 64-bit mode.

General-Purpose 195
Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

Jcc Jump on Condition

Checks the status flags in the rFLAGS register and, if the flags meet the condition specified by the
condition code in the mnemonic (cc), jumps to the target instruction located at the specified relative
offset. Otherwise, execution continues with the instruction following the Jcc instruction.

Unlike the unconditional jump (JMP), conditional jump instructions have only two forms—short and
near conditional jumps. Different opcodes correspond to different forms of one instruction. For
example, the JO instruction (jump if overflow) has opcode OFh 80h for its near form and 70h for its
short form, but the mnemonic is the same for both forms. The only difference is that the near form has
a 16- or 32-bit relative displacement, while the short form always has an 8-bit relative displacement.

Mnemonics are provided to deal with the programming semantics of both signed and unsigned
numbers. Instructions tagged A (above) and B (below) are intended for use in unsigned integer code;
those tagged G (greater) and L (less) are intended for use in signed integer code.

If the jump is taken, the signed displacement is added to the rIP (of the following instruction) and the
result is truncated to 16, 32, or 64 bits, depending on operand size.

In 64-bit mode, the operand size defaults to 64 bits. The processor sign-extends the 8-bit or 32-bit
displacement value to 64 bits before adding it to the RIP.

These instructions cannot perform far jumps (to other code segments). To create a far-conditional-
jump code sequence corresponding to a high-level language statement like:
IF A == B THEN GOTO FarLabel

where FarLabel is located in another code segment, use the opposite condition in a conditional short
jump before an unconditional far jump. Such a code sequence might look like:

cmp A,B ; compare operands

jne NextInstr ; continue program if not equal

Jjmp far FarLabel ; far jump if operands are equal
NextInstr: ; continue program

For details about control-flow instructions, see “Control Transfers” in Volume 1, and “Control-
Transfer Privilege Checks” in Volume 2.

Mnemonic Opcode Description
JO rel8off 70 cb
JO rel160ff OF 80 cw Jump if overflow (OF = 1).
JO rel320ff OF 80 cd
JNO rel8off 71cb
JNO rel160ff OF 81 cw Jump if not overflow (OF = 0).
JNO rel320ff OF 81 cd
JB rel8off 72 cb
JB rel160ff OF 82 cw Jump if below (CF =1).
JB rel32off OF 82 cd
196 General-Purpose

Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
Mnemonic Opcode Description
JC rel8off 72 ch
JC rel16off OF 82 cw Jump if carry (CF = 1).
JC rel320ff OF 82 cd
JNAE rel8off 72 cb
JNAE rel160ff OF 82 cw Jump if not above or equal (CF = 1).
JNAE rel320ff OF 82 cd
JNB rel8off 73 chb
JNB rel16off OF 83 cw Jump if not below (CF = 0).
JNB rel320ff OF 83 cd
JNC rel8off 73 ch
JNC rel160ff OF 83 cw Jump if not carry (CF = 0).
JNC rel32off OF 83 cd
JAE rel8off 73 cb
JAE rel160ff OF 83 cw Jump if above or equal (CF = 0).
JAE rel32off OF 83 cd
JZ rel8off 74 cb
JZ rel16off OF 84 cw Jump if zero (ZF = 1).
JZ rel32o0ff OF 84 cd
JE rel8off 74 cb
JE rel160ff OF 84 cw Jump if equal (ZF =1).
JE rel32off OF 84 cd
JNZ rel8off 75 ¢cb
JNZ rel160off OF 85 cw Jump if not zero (ZF = 0).
JNZ rel320ff OF 85 cd
JNE rel8off 75 chb
JNE rel160ff OF 85 cw Jump if not equal (ZF = 0).
JNE rel320ff OF 85 cd
JBE rel8off 76 cb
JBE rel160ff OF 86 cw Jump if below or equal (CF =1 or ZF = 1).
JBE rel320ff OF 86 cd
JNA rel8off 76 cb
JNA rel160ff OF 86 cw Jump if not above (CF = 1 or ZF =1).
JNA rel32off OF 86 cd
JNBE rel8off 77 cb
JNBE rel160ff OF 87 cw Jump if not below or equal (CF =0 and ZF = 0).
JNBE rel320ff OF 87 cd
JA rel8off 77 cb
JA rel160ff OF 87 cw Jump if above (CF = 0 and ZF = 0).
JA rel320ff OF 87 cd
JS rel8off 78 cb
JS rel160ff OF 88 cw Jump if sign (SF = 1).
JS rel32off OF 88 cd
JNS rel8off 79 cb
JNS rel160ff OF 89 cw Jump if not sign (SF = 0).
JNS rel320ff OF 89 cd
General-Purpose 197

Instruction Reference

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021
Mnemonic Opcode Description

JP rel8off 7Acbh

JP rel16off OF 8A cw Jump if parity (PF = 1).

JP rel320ff OF 8A cd

JPE rel8off 7Acb

JPE rel160ff OF 8A cw Jump if parity even (PF = 1).

JPE rel32off OF 8A cd

JNP rel8off 7B cb

JNP rel16off OF 8B cw Jump if not parity (PF = 0).

JNP rel320ff OF 8B cd

JPO rel8off 7B cb

JPO rel16off OF 8B cw Jump if parity odd (PF = 0).

JPO rel32off OF 8B cd

JL rel8off 7Ccb

JL rel160ff OF 8C cw Jump if less (SF <> OF).

JL rel320ff OF 8C cd

JNGE rel8off 7C ch

JNGE rel160ff OF 8C cw Jump if not greater or equal (SF <> OF).

JNGE rel320ff OF 8C cd

JNL rel8off 7D cb

JNL rel160ff OF 8D cw Jump if not less (SF = OF).

JNL rel32off OF 8D cd

JGE rel8off 7D cb

JGE rel160ff OF 8D cw Jump if greater or equal (SF = OF).

JGE rel32off OF 8D cd

JLE rel8off 7E cb

JLE rel16off OF 8E cw Jump if less or equal (ZF = 1 or SF <> OF).

JLE rel32off OF 8E cd

JNG rel8off 7E cb

JNG rel160ff OF 8E cw Jump if not greater (ZF = 1 or SF <> OF).

JING rel320ff OF 8E cd

JNLE rel8off 7F cb

JNLE rel160ff OF 8F cw Jump if not less or equal (ZF = 0 and SF = OF).

JNLE rel32off OF 8F cd

JG rel8off 7F cb

JG rel16off OF 8F cw Jump if greater (ZF = 0 and SF = OF).

JG rel32off OF 8F cd

Related Instructions

JMP (Near), JMP (Far), JiICXZ

rFLAGS Affected

None

198 General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
General protection, X X X The target offset exceeded the code segment limit or was non-
#GP canonical.
General-Purpose 199

Instruction Reference

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021
JCXZ Jump if rCX Zero
JECXZ
JRCXZ

Checks the contents of the count register (rCX) and, if 0, jumps to the target instruction located at the
specified 8-bit relative offset. Otherwise, execution continues with the instruction following the
JrCXZ instruction.

The size of the count register (CX, ECX, or RCX) depends on the address-size attribute of the JICXZ
instruction. Therefore, JRCXZ can only be executed in 64-bit mode and JCXZ cannot be executed in
64-bit mode.

If the jump is taken, the signed displacement is added to the rIP (of the following instruction) and the
result is truncated to 16, 32, or 64 bits, depending on operand size.

In 64-bit mode, the operand size defaults to 64 bits. The processor sign-extends the 8-bit displacement
value to 64 bits before adding it to the RIP.

For details about control-flow instructions, see “Control Transfers” in Volume 1, and “Control-
Transfer Privilege Checks” in Volume 2.

Mnemonic Opcode Description
JCXZ rel8off E3 ch Jump short if the 16-bit count register (CX) is zero.
JECXZ rel8off E3 ch Jump short if the 32-bit count register (ECX) is zero.
JRCXZ rel8off E3 ch Jump short if the 64-bit count register (RCX) is zero.

Related Instructions

Jee, IMP (Near), JIMP (Far)

rFLAGS Affected
None

Exceptions

Virtual
Exception Real| 8086 |Protected Cause of Exception

General protection, X X X The target offset exceeded the code segment limit or was non-

#GP canonical

200 General-Purpose

Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

JMP (Near) Near Jump

Unconditionally transfers control to a new address without saving the current rIP value. This form of
the instruction jumps to an address in the current code segment and is called a near jump. The target
operand can specify a register, a memory location, or a label.

If the JMP target is specified in a register or memory location, then a 16-, 32-, or 64-bit rIP is read from
the operand, depending on operand size. This rIP is zero-extended to 64 bits.

If the JMP target is specified by a displacement in the instruction, the signed displacement is added to
the rIP (of the following instruction), and the result is truncated to 16, 32, or 64 bits depending on
operand size. The signed displacement can be 8 bits, 16 bits, or 32 bits, depending on the opcode and
the operand size.

For near jumps in 64-bit mode, the operand size defaults to 64 bits. The E9 opcode results in RIP = RIP
+ 32-bit signed displacement, and the FF /4 opcode results in RIP = 64-bit offset from register or
memory. No prefix is available to encode a 32-bit operand size in 64-bit mode.

See JMP (Far) for information on far jumps—jumps to procedures located outside of the current code
segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

Mnemonic Opcode Description

Short jump with the target specified by an 8-bit signed
JMP rel8off EB cb displacement.

Near jump with the target specified by a 16-bit signed
JMP rel160ff E9 cw displacement.

Near jump with the target specified by a 32-bit signed
JMP rel320ff E9 cd displacement.
JMP reg/mem16 FF /4 Near jump with the target specified reg/mem16.

Near jump with the target specified reg/mem32.
JMP reg/mem32 FF/4 (No prefix for encoding in 64-bit mode.)
JMP reg/mem64 FF /4 Near jump with the target specified reg/mem64.

Related Instructions

JMP (Far), Jec, JrCX

rFLAGS Affected

None.

General-Purpose 201
Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #5S X X X non-canonical.
X X X A memory address exceeded a data segment limit or was non-
canonical.
General protection P
’ The target offset exceeded the code segment limit or was non-
#GP X X X canonical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while

#AC

alignment checking was enabled.

202

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

JMP (Far) Far Jump

Unconditionally transfers control to a new address without saving the current CS:rIP values. This form
of the instruction jumps to an address outside the current code segment and is called a far jump. The
operand specifies a target selector and offset.

The target operand can be specified by the instruction directly, by containing the far pointer in the jmp
far opcode itself, or indirectly, by referencing a far pointer in memory. In 64-bit mode, only indirect far
jumps are allowed, executing a direct far jmp (opcode EA) will generate an undefined opcode
exception. For both direct and indirect far jumps, if the JMP (Far) operand-size is 16 bits, the
instruction's operand is a 16-bit selector followed by a 16-bit offset. If the operand-size is 32 or 64 bits,
the operand is a 16-bit selector followed by a 32-bit offset.

In all modes, the target selector used by the instruction can be a code selector. Additionally, the target
selector can also be a call gate in protected mode, or a task gate or TSS selector in legacy protected
mode.

» Target is a code segment—Control is transferred to the target CS:rIP. In this case, the target offset
can only be a 16 or 32 bit value, depending on operand-size, and is zero-extended to 64 bits; 64-bit
offsets are only available via call gates. No CPL change is allowed.

» Target is a call gate—The call gate specifies the actual target code segment and offset, and control
is transferred to the target CS:rIP. When jumping through a call gate, the size of the target rIP is 16,
32, or 64 bits, depending on the size of the call gate. If the target rIP is less than 64 bits, it's zero-
extended to 64 bits. In long mode, only 64-bit call gates are allowed, and they must point to 64-bit
code segments. No CPL change is allowed.

o Targetis a task gate or a TSS—If the mode is legacy protected mode, then a task switch occurs. See
“Hardware Task-Management in Legacy Mode” in volume 2 for details about task switches.
Hardware task switches are not supported in long mode.

See JMP (Near) for information on near jumps—jumps to procedures located inside the current code
segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

Mnemonic Opcode Description

. Far jump direct, with the target specified by a far pointer
JMP FAR pntr16:16 EAcd contained in the instruction. (Invalid in 64-bit mode.)

. Far jump direct, with the target specified by a far pointer
JMP FAR pntr16:32 EAcp contained in the instruction. (Invalid in 64-bit mode.)

. Far jump indirect, with the target specified by a far
SMEFARHEn10-16 FF /5 pointer in memory (16-bit operand size).

. Far jump indirect, with the target specified by a far
JMP FAR mem16:32 FF /5 pointer in memory (32- and 64-bit operand size).

General-Purpose 203
Instruction Reference

AMDZU

AMDG64 Technology

Action

// Far jumps

(JMPF')

24594—Rev. 3.32—March 2021

// See “Pseudocode Definition” on page 57.

JMPF START:

IF

ELSIF

(REAL_ MODE)
JMPF_REAL OR VIRTUAL

JMPF PROTECTED

ELSE //

(PROTECTED MODE)

(VIRTUAL_MODE)
JMPF_REAL OR _VIRTUAL

JMPF_REAL OR _VIRTUAL:

IF (OPCODE == jmpf [mem]) //JMPF Indirect
{
temp RIP = READ MEM.z [mem]
temp CS = READ MEM.w [mem+Z]
}
ELSE // (OPCODE == jmpf direct)
{
temp RIP = z-sized offset specified in the instruction,
zero—extended to 64 bits
temp CS = selector specified in the instruction

IF (temp RIP>CS.limit)
[#GP (0)]

CS.sel
CS.base

RIP

EXCEPTION

= temp CS
temp CS SHL 4

= temp RIP

EXIT

JMPF PROTECTED:

IF (OPCODE == jmpf [mem]) // JMPF Indirect
{
temp offset = READ MEM.z [mem]
temp sel = READ MEM.w [mem+Z]
}
ELSE // (OPCODE == jmpf direct)

{

IF (64BIT MODE)
EXCEPTION

temp offset =

temp sel

[#UD] // "jmpf direct’ is illegal in 64-bit mode

z-sized offset specified in the instruction,

zero-extended to 64 bits
selector specified in the instruction

204

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

temp desc = READ DESCRIPTOR (temp sel, cs_chk)
// read descriptor, perform protection and type checks

IF (temp desc.attr.type == ’available tss’)
TASK_SWITCH // using temp sel as the target tss selector
ELSIF (temp desc.attr.type == ’'taskgate’)
TASK_SWITCH // using the tss selector in the task gate as the
// target tss
ELSIF (temp desc.attr.type == ’‘code’)

// 1if the selector refers to a code descriptor, then
// the offset we read is the target RIP

temp RIP = temp offset
CS = temp desc
IF ((!64BIT MODE) && (temp RIP > CS.limit))
// temp RIP can’t be non-canonical because
// it’s a 16- or 32-bit offset, zero-extended to 64 bits

EXCEPTION [#GP(0)]
}
RIP = temp RIP
EXIT
}
ELSE
{
// (temp desc.attr.type == ’‘callgate’)
// 1if the selector refers to a call gate, then
// the target CS and RIP both come from the call gate
temp RIP = temp desc.offset

IF (LONG_MODE)

{
// in long mode, we need to read the 2nd half of a 16-byte call-gate

// from the gdt/ldt to get the upper 32 bits of the target RIP
temp upper = READ MEM.q [temp sel+8]
IF (temp upper’s extended attribute bits != 0)

EXCEPTION [#GP (temp sel)] // Make sure the extended
// attribute bits are all =zero.

temp RIP = tempRIP + (temp upper SHL 32)
// concatenate both halves of RIP

CS = READ DESCRIPTOR (temp desc.segment, clg chk)
// set up new CS base, attr, limits
(64BIT MODE) && (temp RIP is non-canonical)
| (!64BIT MODE) && (temp RIP > CS.limit))
EXCEPTION [#GP(0)]
RIP = temp RIP
EXIT

IF (
|

General-Purpose 205

Instruction Reference

AMDZU

AMDG64 Technology

Related Instructions

JMP (Near), Jec, JrCX

rFLAGS Affected

24594—Rev. 3.32—March 2021

None, unless a task switch occurs, in which case all flags are modified.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
) X X X The far JUMP indirect opcode (FF /5) had a register operand.
Invalid opcode, , . :
#UD X The far JUMP direct opcode (EA) was executed in 64-bit
mode.
Segment not
present, #NP X -rll-gte ?ggzi?ed code segment, call gate, task gate, or TSS was
(selector) P :
A memory address exceeded the stack segment limit or was
Stack, #5S X X X non-canonical.
X X X A memory address exceeded a data segment limit or was non-
canonical.
General protection P
’ The target offset exceeded the code segment limit or was non-
#GP X X X canonical.
X A null data segment was used to reference memory.

206

General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

AMDG64 Technology

Exception

Real

Virtual
8086

Protected

Cause of Exception

General protection,
#GP

(selector)

X

The target code segment selector was a null selector.

X

A code, call gate, task gate, or TSS descriptor exceeded the
descriptor table limit.

A segment selector’s Tl bit was set, but the LDT selector was
a null selector.

The segment descriptor specified by the instruction was not a
code segment, task gate, call gate or available TSS in legacy
mode, or not a 64-bit code segment or a 64-bit call gate in long
mode.

The RPL of the non-conforming code segment selector
specified by the instruction was greater than the CPL, or its
DPL was not equal to the CPL.

The DPL of the conforming code segment descriptor specified
by the instruction was greater than the CPL.

The DPL of the callgate, taskgate, or TSS descriptor specified
by the instruction was less than the CPL or less than its own
RPL.

The segment selector specified by the call gate or task gate
was a null selector.

The segment descriptor specified by the call gate was not a
code segment in legacy mode or not a 64-bit code segment in
long mode.

>

The DPL of the segment descriptor specified the call gate was
greater than the CPL and it is a conforming segment.

The DPL of the segment descriptor specified by the callgate
was not equal to the CPL and it is a non-conforming segment.

The 64-bit call gate’s extended attribute bits were not zero.

The TSS descriptor was found in the LDT.

Page fault, #PF

A page fault resulted from the execution of the instruction.

Alignment check,
#AC

X XX X[X

An unaligned memory reference was performed while
alignment checking was enabled.

General-Purpose

Instruction Reference

207

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

LAHF Load Status Flags into AH Register

Loads the lower 8 bits of the tFLAGS register, including sign flag (SF), zero flag (ZF), auxiliary carry
flag (AF), parity flag (PF), and carry flag (CF), into the AH register.

The instruction sets the reserved bits 1, 3, and 5 of the rTFLAGS register to 1, 0, and 0, respectively, in
the AH register.

The LAHF instruction is available in 64-bit mode if CPUID Fn8000 0001 ECX[LahfSahf]=1. It is
always available in the other operating modes (including compatibility mode)

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Opcode Description
Load the SF, ZF, AF, PF, and CF flags into the AH
LAHF 9F register.

Related Instructions

SAHF

rFLAGS Affected

None.

Exceptions

Virtual
Exception Real| 8086 |Protected Cause of Exception

Invalid opcode, X The LAHF instruction is not supported in 64-bit mode, as
#UD indicated by CPUID Fn8000_0001_ECX][LahfSahf] = 0.

208 General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

LDS
LES
LFS
LGS
LSS

AMDG64 Technology

Load Far Pointer

Loads a far pointer from a memory location (second operand) into a segment register (mnemonic) and
general-purpose register (first operand). The instruction stores the 16-bit segment selector of the
pointer into the segment register and the 16-bit or 32-bit offset portion into the general-purpose
register. The operand-size attribute determines whether the pointer loaded is 32 or 48 bits in length. A

64-bit operand is not supported.

These instructions load associated segment-descriptor information into the hidden portion of the

specified segment register.

Mnemonic

LDS reg16, mem16:16
LDS reg32, mem16:32
LES reg16, mem16:16

LES reg32, mem16:32

LFS reg16, mem16:16
LFS reg32, mem16:32
LGS reg16, mem16:16
LGS reg32, mem16:32
LSS reg16, mem16:16
LSS reg32, mem16:32

Related Instructions

None

rFLAGS Affected

None

Opcode

C5/7r

C5/7r

C4 rr

C4 rr

OF B4 /r
OF B4 /r
OF BS /r
OF BS /r
OF B2 /r
OF B2 /r

Description

Load DS:reg16 with a far pointer from memory.
[Redefined as VEX (2-byte prefix) in 64-bit mode.]

Load DS:reg32 with a far pointer from memory.
[Redefined as VEX (2-byte prefix) in 64-bit mode.]

Load ES:reg16 with a far pointer from memory.
[Redefined as VEX (3-byte prefix) in 64-bit mode.]

Load ES:reg32 with a far pointer from memory.
[Redefined as VEX (3-byte prefix) in 64-bit mode.]

Load FS:reg16 with a 32-bit far pointer from memory.
Load FS:reg32 with a 48-bit far pointer from memory.

Load GS:reg16 with a 32-bit far pointer from memory.
Load GS:reg32 with a 48-bit far pointer from memory.
Load SS:reg16 with a 32-bit far pointer from memory.
Load SS:reg32 with a 48-bit far pointer from memory.

General-Purpose
Instruction Reference

209

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
i X X X The source operand was a register.
Invalid opcode, ; ; .
#UD X LDS or LES was executed in 64-bit mode and not subject to
interpretation as a VEX prefix.
Sfe%rgﬁtnt#'hoé X The DS, ES, FS, or GS register was loaded with a non-null
E)selecto’r) segment selector and the segment was marked not present.
A memory address exceeded the stack segment limit or was
Stack, #5S X X X non-canonical.
Stack, #SS X The SS register was loaded with a non-null segment selector
(selector) and the segment was marked not present.
i X X X A memory address exceeded a data segment limit or was non-
General protection, canonical.
#GP
A null data segment was used to reference memory.
X A segment register was loaded, but the segment descriptor
exceeded the descriptor table limit.
X A segment register was loaded and the segment selector’s Tl
bit was set, but the LDT selector was a null selector.
X The SS register was loaded with a null segment selector in
non-64-bit mode or while CPL = 3.
General protection, X The SS register was loaded and the segment selector RPL
#GP and the segment descriptor DPL were not equal to the CPL.
(selector) X The SS register was loaded and the segment pointed to was
not a writable data segment.
The DS, ES, FS, or GS register was loaded and the segment
X pointed to was a data or non-conforming code segment, but
the RPL or CPL was greater than the DPL.
X The DS, ES, FS, or GS register was loaded and the segment
pointed to was not a data segment or readable code segment.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while

#AC

alignment checking was enabled.

210

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

LEA Load Effective Address

Computes the effective address of a memory location (second operand) and stores it in a general-
purpose register (first operand).

The address size of the memory location and the size of the register determine the specific action taken
by the instruction, as follows:

» Ifthe address size and the register size are the same, the instruction stores the effective address as
computed.

» If the address size is longer than the register size, the instruction truncates the effective address to
the size of the register.

» Ifthe address size is shorter than the register size, the instruction zero-extends the effective address
to the size of the register.

If the second operand is a register, an undefined-opcode exception occurs.

The LEA instruction is related to the MOV instruction, which copies data from a memory location to a
register, but LEA takes the address of the source operand, whereas MOV takes the contents of the
memory location specified by the source operand. In the simplest cases, LEA can be replaced with
MOV. For example:

lea eax, [ebx]

has the same effect as:

mov eax, ebx
However, LEA allows software to use any valid ModRM and SIB addressing mode for the source
operand. For example:

lea eax, [ebx+edi]

loads the sum of the EBX and EDI registers into the EAX register. This could not be accomplished by
a single MOV instruction.

The LEA instruction has a limited capability to perform multiplication of operands in general-purpose
registers using scaled-index addressing. For example:

lea eax, [ebx+tebx*8]

loads the value of the EBX register, multiplied by 9, into the EAX register. Possible values of
multipliers are 2, 4, 8, 3, 5, and 9.

The LEA instruction is widely used in string-processing and array-processing to initialize an index
register (rSI or rDI) before performing string instructions such as MOVSx. It is also used to initialize
the rBX register before performing the XLAT instruction in programs that perform character
translations. In data structures, the LEA instruction can calculate addresses of operands stored in
memory, and in particular, addresses of array or string elements.

General-Purpose 211
Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

Mnemonic Opcode Description
LEA reg16, mem 8D /r Store effective address in a 16-bit register.
LEA reg32, mem 8D /r Store effective address in a 32-bit register.
LEA reg64, mem 8D /r Store effective address in a 64-bit register.
Related Instructions
MOV
rFLAGS Affected
None
Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
;Ié})/[a)lid opcode, X X X The source operand was a register.
212 General-Purpose

Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

LEAVE Delete Procedure Stack Frame

Releases a stack frame created by a previous ENTER instruction. To release the frame, it copies the
frame pointer (in the rBP register) to the stack pointer register (rSP), and then pops the old frame
pointer from the stack into the rBP register, thus restoring the stack frame of the calling procedure.
The 32-bit LEAVE instruction is equivalent to the following 32-bit operation:

MOV ESP,EBP
POP EBP

To return program control to the calling procedure, execute a RET instruction after the LEAVE
instruction.

In 64-bit mode, the LEAVE operand size defaults to 64 bits, and there is no prefix available for
encoding a 32-bit operand size.

Mnemonic Opcode Description

Set the stack pointer register SP to the value in the BP
LEAVE Cco register and pop BP.

Set the stack pointer register ESP to the value in the
LEAVE C9 EBP register and pop EBP.
(No prefix for encoding this in 64-bit mode.)

Set the stack pointer register RSP to the value in the
LEAVE Cco RBP register and pop RBP.

Related Instructions

ENTER
rFLAGS Affected
None
Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #3S X X X non-canonical.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
General-Purpose 213

Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

LFENCE Load Fence

Acts as a barrier to force strong memory ordering (serialization) between load instructions preceding
the LFENCE and load instructions that follow the LFENCE. Loads from differing memory types may
be performed out of order, in particular between WC/WC+ and other memory types. The LFENCE
instruction assures that the system completes all previous loads before executing subsequent loads.

The LFENCE instruction is weakly-ordered with respect to store instructions, data and instruction
prefetches, and the SFENCE instruction. Speculative loads initiated by the processor, or specified
explicitly using cache-prefetch instructions, can be reordered around an LFENCE.

In addition to load instructions, the LFENCE instruction is strongly ordered with respect to other
LFENCE instructions, as well as MFENCE and other serializing instructions. Further details on the
use of MFENCE to order accesses among differing memory types may be found in AMD64
Architecture Programmer’s Manual Volume 2: System Programming, section 7.4 “Memory Types” on
page 172.

LFENCE is an SSE2 instruction. Support for SSE2 instructions is indicated by CPUID
Fn0000 0001 EDX[SSE2]=1.

In some systems, LFENCE may be configured to be dispatch serializing. In systems where CPUID
Fn8000 0021 EAX[LFenceAlwaysSerializing](bit 2) = 1, LFENCE is always dispatch serializing.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Opcode Description
LFENCE OF AE E8 Force strong ordering of (serialize) load operations.

Related Instructions

MFENCE, SFENCE, MCOMMIT

rFLAGS Affected
None

Exceptions

Virtual
Exception Real| 8086 |Protected Cause of Exception

Invalid opcode, X X X SSE2 instructions are not supported, as indicated by CPUID
#UD Fn0000_0001_EDX[SSE2] = 0.
214 General-Purpose

Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
LLWPCB Load Lightweight Profiling Control Block
Address

Parses the Lightweight Profiling Control Block at the address contained in the specified register. If the
LWPCSB is valid, writes the address into the LWP_CBADDR MSR and enables Lightweight Profiling.

See Volume 2, Chapter 13, for an overview of the lightweight profiling facility.

The LWPCB must be in memory that is readable and writable in user mode. For better performance, it
should be aligned on a 64-byte boundary in memory and placed so that it does not cross a page
boundary, though neither of these suggestions is required.

The LWPCB address in the register is truncated to 32 bits if the operand size is 32.

Action

1. If LWP is not available or if the machine is not in protected mode, LLWPCB immediately causes
a #UD exception.

2. If LWP is already enabled, the processor flushes the LWP state to memory in the old LWPCB. See
description of the SLWPCB instruction on page 332 for details on saving the active LWP state.

If the flush causes a #PF exception, LWP remains enabled with the old LWPCB still active. Note
that the flush is done before LWP attempts to access the new LWPCB.

If the specified LWPCB address is 0, LWP is disabled and the execution of LLWPCB is complete.

4. The LWPCB address is non-zero. LLWPCB validates it as follows:

- Ifany part of the LWPCB or the ring buffer is beyond the data segment limit, LLWPCB causes
a #GP exception.

- If the ring buffer size is below the implementation’s minimum ring buffer size, LLWPCB
causes a #GP exception.

- While doing these checks, LWP reads and writes the LWPCB, which may cause a #PF
exception.

If any of these exceptions occurs, LLWPCB aborts and LWP is left disabled. Usually, the operating

system will handle a #PF exception by making the memory available and returning to retry the
LLWPCB instruction. The #GP exceptions indicate application programming errors.

5. LWP converts the LWPCB address and the ring buffer address to linear address form by adding
the DS base address and stores the addresses internally.

6. LWP examines the LWPCB.Flags field to determine which events should be enabled and whether
threshold interrupts should be taken. It clears the bits for any features that are not available and
stores the result back to LWPCB.Flags to inform the application of the actual LWP state.

7. For each event being enabled, LWP examines the EventIntervaln value and, if necessary, sets it to
an implementation-defined minimum. (The minimum event interval for LWPVAL is zero.) It
loads its internal counter for the event from the value in EventCountern. A zero or negative value

General-Purpose 215
Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

in EventCountern means that the next event of that type will cause an event record to be stored. To
count every jth event, a program should set EventIntervaln to j-/ and EventCountern to some
starting value (where j-/ is a good initial count). If the counter value is larger than the interval, the
first event record will be stored after a larger number of events than subsequent records.

8. LWP is started. The execution of LLWPCB is complete.

Notes

If none of the bits in the LWPCB.Flags specifies an available event, LLWPCB still enables LWP to
allow the use of the LWPINS instruction. However, no other event records will be stored.

A program can temporarily disable LWP by executing SLWPCB to obtain the current LWPCB
address, saving that value, and then executing LLWPCB with a register containing 0. It can later re-
enable LWP by executing LLWPCB with a register containing the saved address.

When LWP is enabled, it is typically an error to execute LLWPCB with the address of the active
LWPCB. When the hardware flushes the existing LWP state into the LWPCB, it may overwrite fields
that the application may have set to new LWP parameter values. The flushed values will then be loaded
as LWP is restarted. To reuse an LWPCB, an application should stop LWP by passing a zero to
LLWPCB, then prepare the LWPCB with new parameters and execute LLWPCB again to restart LWP.

Internally, LWP keeps the linear address of the LWPCB and the ring buffer. If the application changes
the value of DS, LWP will continue to collect samples even if the new DS value would no longer allow
access the LWPCB or the ring buffer. However, a #GP fault will occur if the application uses XRSTOR
to restore LWP state saved by XSAVE. Programs should avoid using XSAVE/XRSTOR on LWP state
if DS has changed. This only applies when the CPL != 0; kernel mode operation of XRSTOR is
unaffected by changes to DS. See instruction listing for XSAVE in Volume 4 for details.

Operating system and hypervisor code that runs when CPL # 3 should use XSAVE and XRSTOR to
control LWP rather than using LLWPCB. Use WRMSR to write 0 to the LWP_CBADDR MSR to
immediately stop LWP without saving its current state.

It is possible to execute LLWPCB when the CPL != 3 or when SMM is active, but the system software
must ensure that the LWPCB and the entire ring buffer are properly mapped into writable memory in
order to avoid a #PF or #GP fault. Furthermore, if LWP is enabled when a kernel executes LLWPCB,
both the old and new control blocks and ring buffers must be accessible. Using LLWPCB in these
situations is not recommended.

LLWPCB is an LWP instruction. Support for LWP instructions is indicated by CPUID
Fn8000 0001 ECX[LWP]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

216 General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

Instruction Encoding

Mnemonic

LLWPCB reg32
LLWPCB reg64

AMDG64 Technology

Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode
8F RXB.09 0.1111.0.00 12 /0
8F RXB.09 1.1111.0.00 12 /0

ModRM.reg augments the opcode and is assigned the value 0. ModRM.r/m (augmented by XOP.R)
specifies the register containing the effective address of the LWPCB. ModRM.mod is 11b.

Related Instructions

SLWPCB, LWPVAL, LWPINS

rFLAGS Affected
None
Exceptions
. Virtual .
Exception Real| 8086 |Protected Cause of Exception
X X X LWP instructions are not supported, as indicated by CPUID
Invalid opcode, Fn8000_0001_ECX[LWP] = 0.
#UD X X The system is not in protected mode.
X LWP is not available, or mod != 11b, or vvvv I= 1111b.
i X Any part of the LWPCB or the event ring buffer is beyond the
Sggeral protection, DS segment limit.
X Any restrictions on the contents of the LWPCB are violated
X A page fault resulted from reading or writing the LWPCB.
X LWP was already enabled and a page fault resulted from
Page fault, #PF reading or writing the old LWPCB.
X LWP was already enabled and a page fault resulted from
flushing an event to the old ring buffer.

General-Purpose
Instruction Reference

217

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

LODS Load String
LODSB
LODSW
LODSD
LODSQ

Copies the byte, word, doubleword, or quadword in the memory location pointed to by the DS:rSI
registers to the AL, AX, EAX, or RAX register, depending on the size of the operand, and then
increments or decrements the rSI register according to the state of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments rSI; otherwise, it decrements rSI. It increments or
decrements rSI by 1, 2, 4, or 8, depending on the number of bytes being loaded.

The forms of the LODS instruction with an explicit operand address the operand at seg:[rSI]. The
value of seg defaults to the DS segment, but may be overridden by a segment prefix. The explicit
operand serves only to specify the type (size) of the value being copied and the specific registers used.

The no-operands forms of the instruction always use the DS:[rSI] registers to point to the value to be
copied (they do not allow a segment prefix). The mnemonic determines the size of the operand and the
specific registers used.

The LODSx instructions support the REP prefixes. For details about the REP prefixes, see “Repeat
Prefixes” on page 12. More often, software uses the LODSx instruction inside a loop controlled by a
LOOPcc instruction as a more efficient replacement for instructions like:

mov eax, dword ptr ds:[esi]
add esi, 4

The LODSQ instruction can only be used in 64-bit mode.

Mnemonic Opcode Description
LODS mem8 AC Iaggse:)ny;re“artsllj.s:rSI into AL and then increment or
LODS mem16 AD Iagggem%rnq[?éPS:rSI into AX and then increment or
L0DS mema? 0
LODS mem64 AD I(;??igc?r:?r?g\rll?rrdsﬁt DS:rSl into RAX and then increment
LODSB AC Iaggﬁie?nyéﬁtartstl).s:rSI into AL and then increment or
LODSW AD Iagggetmhgnv:?gli.at DS:rSl into AX and then increment or
218 General-Purpose

Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

AMDG64 Technology

Mnemonic Opcode Description
Load doubleword at DS:rSl into EAX and then
LODSD AD increment or decrement rSI.
Load quadword at DS:rSl into RAX and then increment

LODSQ AD or decrement rSl.
Related Instructions
MOVSx, STOSx
rFLAGS Affected
None
Exceptions

Virtual
Exception Real| 8086 |Protected Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #5S X X X non-canonical.
i X X X A memory address exceeded a data segment limit or was non-

General protection, canonical.

#GP

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while

#AC alignment checking was enabled.

General-Purpose
Instruction Reference

219

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

LOOP Loop
LOOPE

LOOPNE

LOOPNZ

LOOPZ

Decrements the count register (rCX) by 1, then, if rCX is not 0 and the ZF flag meets the condition
specified by the mnemonic, it jumps to the target instruction specified by the signed 8-bit relative
offset. Otherwise, it continues with the next instruction after the LOOPcc instruction.

The size of the count register used (CX, ECX, or RCX) depends on the address-size attribute of the
LOOPcc instruction.

The LOOP instruction ignores the state of the ZF flag.

The LOOPE and LOOPZ instructions jump if rCX is not 0 and the ZF flag is set to 1. In other words,
the instruction exits the loop (falls through to the next instruction) if rCX becomes 0 or ZF = 0.

The LOOPNE and LOOPNZ instructions jump if rCX is not 0 and ZF flag is cleared to 0. In other
words, the instruction exits the loop if rCX becomes 0 or ZF = 1.

The LOOPcc instruction does not change the state of the ZF flag. Typically, the loop contains a
compare instruction to set or clear the ZF flag.

If the jump is taken, the signed displacement is added to the rIP (of the following instruction) and the
result is truncated to 16, 32, or 64 bits, depending on operand size.

In 64-bit mode, the operand size defaults to 64 bits without the need for a REX prefix, and the
processor sign-extends the 8-bit offset before adding it to the RIP.

Mnemonic Opcode Description
LOORP rel8off E2 cb Decrement rCX, then jump short if rCX is not 0.
LOOPE relSoff E1 ch I13ecrement rCX, then jump short if rCX is not 0 and ZF is
LOOPNE rel8off EO cb iIgeocrement rCX, then Jump short if rCX is not 0 and ZF
LOOPNZ rel8off EO cb iIgeocrement rCX, then Jump short if rCX is not 0 and ZF
LOOPZ rel8off E1ch iIge1crement rCX, then Jump short if rCX is not 0 and ZF

Related Instructions

None

220 General-Purpose

Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
rFLAGS Affected
None

Exceptions

Virtual
Exception Real| 8086 |Protected Cause of Exception

General protection, X X X The target offset exceeded the code segment limit or was non-
#GP canonical.
General-Purpose 221

Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

LWPINS Lightweight Profiling Insert Record

Inserts programmed event record into the LWP event ring buffer in memory and advances the ring
buffer pointer.

Refer to the description of the programmed event record in Volume 2, Chapter 13. The record has an
Eventld of 255. The value in the register specified by vvvv (first operand) is stored in the Data?2 field at
bytes 23—16 (zero extended if the operand size is 32). The value in a register or memory location
(second operand) is stored in the Datal field at bytes 7—4. The immediate value (third operand) is
truncated to 16 bits and stored in the Flags field at bytes 3-2.

If the ring buffer is not full, or if LWP is running in Continuous Mode, the head pointer is advanced
and the CF flag is cleared. If the ring buffer threshold is exceeded and threshold interrupts are enabled,
an interrupt is signaled. If LWP is in Continuous Mode and the new head pointer equals the tail pointer,
the MissedEvents counter is incremented to indicate that the buffer wrapped.

If the ring buffer is full and LWP is running in Synchronized Mode, the event record overwrites the last
record in the buffer, the MissedEvents counter in the LWPCB is incremented, the head pointer is not
advanced, and the CF flag is set.

LWPINS generates an invalid opcode exception (#UD) if the machine is not in protected mode or if
LWP is not available.

LWPINS simply clears CF if LWP is not enabled. This allows LWPINS instructions to be harmlessly
ignored if profiling is turned off.

It is possible to execute LWPINS when the CPL # 3 or when SMM is active, but the system software
must ensure that the memory operand (if present), the LWPCB, and the entire ring buffer are properly
mapped into writable memory in order to avoid a #PF or #GP fault. Using LWPINS in these situations
1s not recommended.

LWPINS can be used by a program to mark significant events in the ring buffer as they occur. For
instance, a program might capture information on changes in the process’ address space such as library
loads and unloads, or changes in the execution environment such as a change in the state of a user-
mode thread of control.

Note that when the LWPINS instruction finishes writing a event record in the event ring buffer, it
counts as an instruction retired. If the Instructions Retired event is active, this might cause that counter
to become negative and immediately store another event record with the same instruction address (but
different Eventld values).

LWPINS is an LWP instruction. Support for LWP instructions is indicated by CPUID
Fn8000 0001 ECX[LWP]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

222 General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

Instruction Encoding

Mnemonic

LWPINS reg32.vvvy, reg/mem32, imm32

LWPINS reg64.vvvy, reg/mem32, imm32

AMDG64 Technology

Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode
8F RXB.0OA 0.src1.0.00 12 /0 /imm32
8F RXB.0OA 1.src1.0.00 12 /0 /imm32

ModRM.reg augments the opcode and is assigned the value 0. The {mod, r/m} field of the ModRM
byte (augmented by XOP.R) encodes the second operand. A 4-byte immediate field follows ModRM.

Related Instructions

LLWPCB, SLWPCB, LWPVAL

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL | OF |DF | IF | TF | SF | ZF | AF | PF | CF
M

21 120 |19 |18 |17 |16 | 14 | 1312 |11 |10 | 9 | 8 | 7 | 6 | 4 | 2 | O

Undefined flags are U.

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.

#GP

Exceptions
. Virtual .
Exception Real| 8086 |Protected Cause of Exception
X X X LWP instructions are not supported, as indicated by CPUID
Invalid opcode, Fn8000_0001_ECX[LWP] =0.
#UD X X The system is not in protected mode.
X LWP is not available.
X A page fault resulted from reading or writing the LWPCB.
Page fault, #PF X A page fault resulted from writing the event to the ring buffer.
X A page fault resulted from reading a modrm operand from
memory.
General protection, X A modrm operand in memory exceeded the segment limit.

General-Purpose
Instruction Reference

223

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

LWPVAL Lightweight Profiling Insert Value

Decrements the event counter associated with the programmed value sample event (see “Programmed
Value Sample” in Volume 2, Chapter 13). If the resulting counter value is negative, inserts an event
record into the LWP event ring buffer in memory and advances the ring buffer pointer.

Refer to the description of the programmed value sample record in Volume 2, Chapter 13. The event
record has an Eventld of 1. The value in the register specified by vvvv (first operand) is stored in the
Data?2 field at bytes 23—16 (zero extended if the operand size is 32). The value in a register or memory
location (second operand) is stored in the Datal field at bytes 7—4. The immediate value (third
operand) is truncated to 16 bits and stored in the Flags field at bytes 3-2.

If the programmed value sample record is not written to the event ring buffer, the memory location of
the second operand (assuming it is memory-based) is not accessed.

If the ring buffer is not full or if LWP is running in continuous mode, the head pointer is advanced and
the event counter is reset to the interval for the event (subject to randomization). If the ring buffer
threshold is exceeded and threshold interrupts are enabled, an interrupt is signaled. If LWP is in
Continuous Mode and the new head pointer equals the tail pointer, the MissedEvents counter is
incremented to indicate that the buffer wrapped.

If the ring buffer is full and LWP is running in Synchronized Mode, the event record overwrites the last
record in the buffer, the MissedEvents counter in the LWPCB is incremented, and the head pointer is
not advanced.

LWPVAL generates an invalid opcode exception (#UD) if the machine is not in protected mode or if
LWP is not available.

LWPVAL does nothing if LWP is not enabled or if the Programmed Value Sample event is not enabled
in LWPCB.Flags. This allows LWPVAL instructions to be harmlessly ignored if profiling is turned off.

It is possible to execute LWPVAL when the CPL != 3 or when SMM is active, but the system software
must ensure that the memory operand (if present), the LWPCB, and the entire ring buffer are properly
mapped into writable memory in order to avoid a #PF or #GP fault. Using LWPVAL in these situations
is not recommended.

LWPVAL can be used by a program to perform value profiling. This is the technique of sampling the
value of some program variable at a predetermined frequency. For example, a managed runtime might
use LWPVAL to sample the value of the divisor for a frequently executed divide instruction in order to
determine whether to generate specialized code for a common division. It might sample the target
location of an indirect branch or call to see if one destination is more frequent than others. Since
LWPVAL does not modify any registers or condition codes, it can be inserted harmlessly between any
instructions.

224 General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

Note

When LWPVAL completes (whether or not it stored an event record in the event ring buffer), it counts
as an instruction retired. If the Instructions Retired event is active, this might cause that counter to
become negative and immediately store an event record. If LWPVAL also stored an event record, the
buffer will contain two records with the same instruction address (but different Eventld values).

LWPVAL is an LWP instruction. Support for LWP instructions is indicated by CPUID
Fn8000 0001 ECX[LWP]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Instruction Encoding

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode
LWPVAL reg32.vvvv, reg/mem32, imm32 8F RXB.0A 0.src1.0.00 12 /1 /imm32
LWPVAL reg64.vvvv, reg/mem32, imm32 8F RXB.0A 1.src1.0.00 12 /1 /imm32

ModRM.reg augments the opcode and is assigned the value 001b. The {mod, r/m} field of the
ModRM byte (augmented by XOP.R) encodes the second operand. A four-byte immediate field
follows ModRM.

Related Instructions

LLWPCB, SLWPCB, LWPINS

rFLAGS Affected

None

General-Purpose 225
Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

Exceptions
. Virtual .
Exception Real| 8086 |Protected Cause of Exception
X X X LWP instructions are not supported, as indicated by CPUID
Invalid opcode Fn8000_0001_ECX[LWP] = 0.
#UD X X The system is not in protected mode.
X LWP is not available.
X A page fault resulted from reading or writing the LWPCB.
Page fault, #PF X A page fault resulted from writing the event to the ring buffer.
A page fault resulted from reading a modrm operand from
X
memory.
General protection, X A modrm operand in memory exceeded the segment limit.

#GP

226

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

LZCNT Count Leading Zeros

Counts the number of leading zero bits in the 16-, 32-, or 64-bit general purpose register or memory
source operand. Counting starts downward from the most significant bit and stops when the highest bit
having a value of 1 is encountered or when the least significant bit is encountered. The count is written
to the destination register.

This instruction has two operands:
LZCNT dest, src

If the input operand is zero, CF is set to 1 and the size (in bits) of the input operand is written to the
destination register. Otherwise, CF is cleared.

If the most significant bit is a one, the ZF flag is set to 1, zero is written to the destination register.
Otherwise, ZF is cleared.

LZCNT is an Advanced Bit Manipulation (ABM) instruction. Support for the LZCNT instruction is
indicated by CPUID Fn8000 0001 ECX[ABM] = 1. If the LZCNT instruction is not available, the
encoding is interpreted as the BSR instruction. Software MUST check the CPUID bit once per
program or library initialization before using the LZCNT instruction, or inconsistent behavior may
result.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Opcode Description

LZCNT reg16, reg/mem16 F3 OF BD /r Count the number of leading zeros in reg/mem16.
LZCNT reg32, reg/mem32 F3 OF BD /r Count the number of leading zeros in reg/mem32.
LZCNT reg64, reg/mem64 F3 OF BD /r Count the number of leading zeros in reg/mem64.

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF,
BSR, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose 227
Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

rFLAGS Affected

ID |[VIP|VIF| AC | VM | RF | NT IOPL OF |[DF | IF | TF | SF | ZF | AF | PF | CF
u Uu | M| U u | M

21 | 20| 19 | 18 | 17 | 16 | 14 13:12 11 10 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. Aflag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Mode
Exception Virtual Cause of Exception
Real| 8086 |Protected
A memory address exceeded the stack segment limit or
Stack, #55 X X X was non-canonical.
. X X X A memory address exceeded a data segment limit or was

General protection, non-canonical.

#GP

X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
; An unaligned memory reference was performed while

Alignment check, #AC X X alignment checking was enabled.

228

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

MCOMMIT Commit Stores to Memory

MCOMMIT provides a fencing and error detection capability for stores to system memory
components that have delayed error reporting. Execution of MCOMMIT ensures that any preceding
stores in the thread to such memory components have completed (target locations written, unless
inhibited by an error condition) and that any errors encountered by those stores have been signaled to
associated error logging resources. If any such errors are present, MCOMMIT will clear rTFLAGS.CF
to zero, otherwise it will set rFLAGS.CF to one.

These errors are specific to the design of the platform and are reported only via MCOMMIT and in
associated error logging registers on the platform; they are not visible to the Machine Check
Architecture. Execution of MCOMMIT does not change any state in the error logging resources. Any
error indications will need to be cleared by privileged software before MCOMMIT can return an error-
free indication. Details on the error logging mechanisms may be found in the Processor Programming
Reference manual for any product that supports this technology and the MCOMMIT instruction.

The MCOMMIT instruction is supported if the feature flag CPUID Fn8000 0008 EBX[MCOMMIT]
=1 (bit 8). The MCOMMIT instruction must be explicitly enabled by the OS by setting
EFER.MCOMMIT=1 (EFER bit 17), otherwise attempted execution of MCOMMIT will result in a
#UD exception.

MCOMMIT uses the same ordering rules as the SFENCE instruction. It may be executed at any
privilege level.

Instruction Encoding

Mnemonic Opcode Description
MCOMMIT F3 OF 01 FA Commit stores to memory

Related Instructions

LFENCE, SFENCE, MFENCE

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF

0 0 0 0 0 M
21 | 20 | 19 | 18 | 17 | 16 | 14 13:12 1110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

General-Purpose 229
Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

MFENCE Memory Fence

Acts as a barrier to force strong memory ordering (serialization) between load and store instructions
preceding the MFENCE, and load and store instructions that follow the MFENCE. The processor may
perform loads out of program order with respect to non-conflicting stores for certain memory types.
The MFENCE instruction ensures that the system completes all previous memory accesses before
executing subsequent accesses.

The MFENCE instruction is weakly-ordered with respect to data and instruction prefetches.

Speculative loads initiated by the processor, or specified explicitly using cache-prefetch instructions,
can be reordered around an MFENCE.

In addition to load and store instructions, the MFENCE instruction is strongly ordered with respect to
other MFENCE instructions, LFENCE instructions, SFENCE instructions, serializing instructions,
and CLFLUSH instructions. Further details on the use of MFENCE to order accesses among differing
memory types may be found in AMD64 Architecture Programmer’s Manual Volume 2: System
Programming, section 7.4 “Memory Types” on page 172.

The MFENCE instruction is a serializing instruction.

MFENCE is an SSE2 instruction. Support for SSE2 instructions is indicated by CPUID
Fn0000 0001 EDX[SSE2]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Instruction Encoding

Mnemonic Opcode Description
Force strong ordering of (serialized) load and store
MFENCE OF AE FO operations.

Related Instructions

LFENCE, SFENCE, MCOMMIT

rFLAGS Affected
None

Exceptions

Virtual
Exception Real| 8086 |Protected Cause of Exception

Invalid opcode, X X X SSE2 instructions are not supported, as indicated by CPUID
#UD Fn0000_0001_EDX[SSE2] = 0.

230 General-Purpose

Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

MONITORX Setup Monitor Address

Establishes a linear address range of memory for hardware to monitor and puts the processor in the
monitor event pending state. When in the monitor event pending state, the monitoring hardware
detects stores to the specified linear address range and causes the processor to exit the monitor event
pending state. The MWAIT and MWAITX instructions use the state of the monitor hardware.

The address range should be a write-back memory type. Executing MONITORX on an address range
for a non-write-back memory type is not guaranteed to cause the processor to enter the monitor event
pending state. The size of the linear address range that is established by the MONITORX instruction
can be determined by CPUID function 0000_0005h.

The rAX register provides the effective address. The DS segment is the default segment used to create
the linear address. Segment overrides may be used with the MONITORX instruction.

The ECX register specifies optional extensions for the MONITORX instruction. There are currently
no extensions defined and setting any bits in ECX will result in a #GP exception. The ECX register
operand is implicitly 32-bits.

The EDX register specifies optional hints for the MONITORX instruction. There are currently no
hints defined and EDX is ignored by the processor. The EDX register operand is implicitly 32-bits.

The MONITORX instruction can be executed at any privilege level and MSR
C001 0015h[MonMwaitUserEn] hasno effect on MONITORX.

MONITORX performs the same segmentation and paging checks as a 1-byte read.

Support for the MONITORX instruction is indicated by CPUID Fn8000 0001 ECX[MONITORX]
(bit29)=1.

Software must check the CPUID bit once per program or library initialization before using the
MONITORX instruction, or inconsistent behavior may result.

The following pseudo-code shows typical usage of a MONITORX/MWAITX pair:

EAX = Linear Address_to Monitor;
ECX = 0; // Extensions
EDX = 0; // Hints
while (!matching store done) {

MONITORX EAX, ECX, EDX
IF (!matching store done) {
MWAITX EAX, ECX

}

General-Purpose 231
Instruction Reference

AMDZU

AMDG64 Technology

Mnemonic

MONITORX

Related Instructions

MWAITX, MONITOR, MWAIT

Opcode

OF 01 FA

24594—Rev. 3.32—March 2021

Description

Establishes a range to be monitored

rFLAGS Affected
None
Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
Invalid opcode, X X X MONITORX/MWAITX instructions are not supported, as
#UD indicated by CPUID Fn8000_0001_ECX[MONITORX] =0
A memory address exceeded the stack segment limit or was
Stack, #5S X X X non-canonical.
A memory address exceeded a data segment limit or was non-
X X X A
. canonical
General protection,
#GP X X X ECX was non-zero
X A null data segment was used to reference memory
Page Fault, #PF X X A page fault resulted from the execution of the instruction

232

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

MOV Move

Copies an immediate value or the value in a general-purpose register, segment register, or memory
location (second operand) to a general-purpose register, segment register, or memory location. The
source and destination must be the same size (byte, word, doubleword, or quadword) and cannot both
be memory locations.

In opcodes A0 through A3, the memory offsets (called moffsets) are address sized. In 64-bit mode,
memory offsets default to 64 bits. Opcodes A0—A3, in 64-bit mode, are the only cases that support a
64-bit offset value. (In all other cases, offsets and displacements are a maximum of 32 bits.) The B8
through BF (B8 +rg) opcodes, in 64-bit mode, are the only cases that support a 64-bit immediate value
(in all other cases, immediate values are a maximum of 32 bits).

When reading segment-registers with a 32-bit operand size, the processor zero-extends the 16-bit
selector results to 32 bits. When reading segment-registers with a 64-bit operand size, the processor
zero-extends the 16-bit selector to 64 bits. If the destination operand specifies a segment register (DS,
ES, FS, GS, or SS), the source operand must be a valid segment selector.

It is possible to move a null segment selector value (0000—0003h) into the DS, ES, FS, or GS register.
This action does not cause a general protection fault, but a subsequent reference to such a segment
does cause a #GP exception. For more information about segment selectors, see “Segment Selectors
and Registers” in Volume 2.

When the MOV instruction is used to load the SS register, the processor blocks external interrupts until
after the execution of the following instruction. This action allows the following instruction to be a
MOV instruction to load a stack pointer into the ESP register (MOV ESP, val) before an interrupt
occurs. However, the LSS instruction provides a more efficient method of loading SS and ESP.

Attempting to use the MOV instruction to load the CS register generates an invalid opcode exception
(#UD). Use the far JMP, CALL, or RET instructions to load the CS register.

To initialize a register to 0, rather than using a MOV instruction, it may be more efficient to use the
XOR instruction with identical destination and source operands.

Mnemonic Opcode Description

Move the contents of an 8-bit register to an 8-bit
MOV reg/mem8, reg8 88 /r destination register or memory operand.

Move the contents of a 16-bit register to a 16-bit
MOV reg/mem16, reg16 89/ destination register or memory operand.

Move the contents of a 32-bit register to a 32-bit
MOV reg/mem32, reg32 89 /r destination register or memory operand.

Move the contents of a 64-bit register to a 64-bit
MOV reg/mem64, reg64 89 /r destination register or memory operand.

Move the contents of an 8-bit register or memory
MOV reg8, reg/mem8 8A /K operand to an 8-bit destination register.

General-Purpose 233
Instruction Reference

AMDZU

AMDG64 Technology

Mnemonic

MOV reg16, reg/mem16
MOV reg32, reg/mem32
MOV reg64, reg/mem64

MOV reg16/32/64/mem16,
segReg

MOV segReg, reg/mem16
MOV AL, moffset8

MOV AX, moffset16

MOV EAX, moffset32
MOV RAX, moffset64
MOV moffset8, AL

MOV moffset16, AX

MOV moffset32, EAX

MOV moffset64, RAX

MOV reg8, imm8

MOV reg16, imm16
MOV reg32, imm32
MOV reg64, imm64

MOV reg/mem8, imm8
MOV reg/mem16, inm16
MOV reg/mem32, imm32

MOV reg/mem64, inm32

Opcode

8B /r
8B /r

8B /r

8C /r

8E /r
A0
A1
A1
A1
A2
A3
A3

A3

BO +rb ib
B8 +rw iw
B8 +rd id
B8 +rq iq

C6 /0 ib
C7 /0 iw
C7 /0 id

C7/0id

24594—Rev. 3.32—March 2021

Description

Move the contents of a 16-bit register or memory
operand to a 16-bit destination register.

Move the contents of a 32-bit register or memory
operand to a 32-bit destination register.

Move the contents of a 64-bit register or memory
operand to a 64-bit destination register.

Move the contents of a segment register to a 16-bit, 32-
bit, or 64-bit destination register or to a 16-bit memory
operand.

Move the contents of a 16-bit register or memory
operand to a segment register.

Move 8-bit data at a specified memory offset to the AL
register.

Move 16-bit data at a specified memory offset to the AX
register.

Move 32-bit data at a specified memory offset to the
EAX register.

Move 64-bit data at a specified memory offset to the
RAX register.

Move the contents of the AL register to an 8-bit memory
offset.

Move the contents of the AX register to a 16-bit memory
offset.

Move the contents of the EAX register to a 32-bit
memory offset.

Move the contents of the RAX register to a 64-bit
memory offset.

Move an 8-bit immediate value into an 8-bit register.
Move a 16-bit immediate value into a 16-bit register.
Move an 32-bit immediate value into a 32-bit register.
Move an 64-bit immediate value into a 64-bit register.

Move an 8-bit immediate value to an 8-bit register or
memory operand.

Move a 16-bit immediate value to a 16-bit register or
memory operand.

Move a 32-bit immediate value to a 32-bit register or
memory operand.

Move a 32-bit signed immediate value to a 64-bit
register or memory operand.

234

General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

Related Instructions

AMDG64 Technology

MOV CRn, MOV DRn, MOVD, MOVSX, MOVZX, MOVSXD, MOV Sx

rFLAGS Affected
None
Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
g‘dgﬁd opcode, X X X An attempt was made to load the CS register.
Sree%rgr?tnt#?\loé X The DS, ES, FS, or GS register was loaded with a non-null
E)selecto’r) segment selector and the segment was marked not present.
A memory address exceeded the stack segment limit or was
Stack, #SS X X X non-canonical.
Stack, #SS X The SS register was loaded with a non-null segment selector,
(selector) and the segment was marked not present.
X X X A memory address exceeded a data segment limit or was non-
General protection, canonical.
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
X A segment register was loaded, but the segment descriptor
exceeded the descriptor table limit.
X A segment register was loaded and the segment selector’s Tl
bit was set, but the LDT selector was a null selector.
X The SS register was loaded with a null segment selector in
non-64-bit mode or while CPL = 3.
General protection, X The SS register was loaded and the segment selector RPL
#GP and the segment descriptor DPL were not equal to the CPL.
(selector) X The SS register was loaded and the segment pointed to was
not a writable data segment.
The DS, ES, FS, or GS register was loaded and the segment
X pointed to was a data or non-conforming code segment, but
the RPL or CPL was greater than the DPL.
X The DS, ES, FS, or GS register was loaded and the segment
pointed to was not a data segment or readable code segment.
Page fault, #PF A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while

#AC

alignment checking was enabled.

General-Purpose

Instruction Reference

235

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

MOVBE Move Big Endian

Loads or stores a general purpose register while swapping the byte order. Operates on 16-bit, 32-bit, or
64-bit values. Converts big-endian formatted memory data to little-endian format when loading a
register and reverses the conversion when storing a GPR to memory.

The load form reads a 16-, 32-, or 64-bit value from memory, swaps the byte order, and places the
reordered value in a general-purpose register. When the operand size is 16 bits, the upper word of the
destination register remains unchanged. In 64-bit mode, when the operand size is 32 bits, the upper
doubleword of the destination register is cleared.

The store form takes a 16-, 32-, or 64-bit value from a general-purpose register, swaps the byte order,
and stores the reordered value in the specified memory location. The contents of the source GPR
remains unchanged.

In the 16-bit swap, the upper and lower bytes are exchanged. In the doubleword swap operation, bits
7:0 are exchanged with bits 31:24 and bits 15:8 are exchanged with bits 23:16. In the quadword swap
operation, bits 7:0 are exchanged with bits 63:56, bits 15:8 with bits 55:48, bits 23:16 with bits 47:40,
and bits 31:24 with bits 39:32.

Support for the MOVBE instruction is indicated by CPUID Fn0000 0001 ECX[MOVBE]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Instruction Encoding

Mnemonic Opcode Description

Load the low word of a general-purpose register from a
MOVBE reg16, mem16 OF 38 FO 16-bit memory location while swapping the bytes.

Load the low doubleword of a general-purpose register
MOVBE reg32, mem32 OF 38 FO /r from a 32-bit memory location while swapping the bytes.

Load a 64-bit register from a 64-bit memory location
MOVBE reg64, mem64 OF 38 FO /r while swapping the bytes.

Store the low word of a general-purpose register to a
MOVBE mem?16, reg16 OF 38 F1/ 16-bit memory location while swapping the bytes.

Store the low doubleword of a general-purpose register
MOVBE mem32, reg32 OF 38 F1 /r to a 32-bit memory location while swapping the bytes.

Store the contents of a 64-bit general-purpose register
MOVBE mem64, reg64 OF 38 F1 /r to a 64-bit memory location while swapping the bytes.

Related Instruction

BSWAP

236 General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

AMDG64 Technology

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 | Protected Cause of Exception
Invalid opcode, X X X Instruction not supported as indicated by CPUID
#UD Fn0000_0001_ECX[MOVBE] = 0.
A memory address exceeded the stack segment limit or was non-
Stack, #SS X X X canonical.
A memory address exceeded a data segment limit or was non-
X X X :
; canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while alignment
#AC checking was enabled.

General-Purpose

Instruction Reference

237

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

MOVD Move Doubleword or Quadword

Moves a 32-bit or 64-bit value in one of the following ways:

* from a 32-bit or 64-bit general-purpose register or memory location to the low-order 32 or 64 bits
of an XMM register, with zero-extension to 128 bits

e from the low-order 32 or 64 bits of an XMM to a 32-bit or 64-bit general-purpose register or
memory location

e from a 32-bit or 64-bit general-purpose register or memory location to the low-order 32 bits (with
zero-extension to 64 bits) or the full 64 bits of an MMX register

e from the low-order 32 or the full 64 bits of an MMX register to a 32-bit or 64-bit general-purpose
register or memory location

Figure 3-1 on page 233 illustrates the operation of the MOVD instruction.

The MOVD instruction form that moves data to or from MMX registers is part of the MMX instruction
subset. Support for MMX instructions is indicated by CPUID Fn0000 0001 EDX[MMX] or
Fn0000 0001 EDX[MMX] = 1.

The MOVD instruction form that moves data to or from XMM registers is part of the SSE2 instruction
subset. Support for SSE2 instructions is indicated by CPUID Fn0000 0001 EDX[SSE2]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

238 General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

AMDG64 Technology

xmm reg/mem32
127 23 v 0 31 0
: | | []
|
xmm reg/memé64
127 64 63 v 0 63 0
0 | | |
with REX prefix
reg/mem32 xmm
All operations 1 v 0 127 32 3] 0
are "copy" | | | | |
|
reg/mem64 Xxmm
63 v 0 127 64 63 0
|
with REX prefix
mmx reg/mem32
63 23 ¥ 0 3] 0
o] | []
|
mmx reg/meme64
63 v 0 63 0
with REX prefix
reg/mem32 mmx
5% 0 63 32 3 0
|
reg/meme64 mmx
63 v 0 63 0
with REX prefix

Figure 3-1. MOVD Instruction Operation

General-Purpose

Instruction Reference

239

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

Instruction Encoding

Mnemonic Opcode Description

Move 32-bit value from a general-purpose register or

MOVD xmm, regimem32 66 OF 6E /r 32-bit memory location to an XMM register.

1 Move 64-bit value from a general-purpose register or
MOVD" xmm, reg/mem64 B6OF6E/ g4 pit memory location to an XMM register.

Move 32-bit value from an XMM register to a 32-bit

MOVD regimem32, xmm 66 OF 7E /r general-purpose register or memory location.

Move 64-bit value from an XMM register to a 64-bit
1
MOVD" reg/mem64, xmm 66 OF 7E /r general-purpose register or memory location.

Move 32-bit value from a general-purpose register or

MOVD mmx, regimem32 OF 6E 7 32-bit memory location to an MMX register.

Move 64-bit value from a general-purpose register or

MOVD mmx, regimem64 OF 6E /r 64-bit memory location to an MMX register.

Move 32-bit value from an MMX register to a 32-bit
MOVD reg/mem32, mmx OF 7E /r general-purpose register or memory location.
MOVD reg/mem64, mmx OF 7E /r Move 64-bit value from an MMX register to a 64-bit

general-purpose register or memory location.

Note: 1. Also known as MOVQ in some developer tools.

Related Instructions

MOVDQA, MOVDQU, MOVDQ2Q, MOVQ, MOVQ2DQ

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
Virtual
Exception Real | 8086 | Protected Description
MMX instructions are not supported, as indicated by
X X X CPUID Fn0000_0001_EDX[MMX] or
Fn0000_0001_EDX[MMX] = 0.
i X X X SSE2 instructions are not supported, as indicated by
Invalid opcode, #UD CPUID Fn0000_0001_EDX[SSEZ2] = 0.
X X X The emulate bit (EM) of CRO was set to 1.
X X X The instruction used XMM registers while
CR4.0SFXSR = 0.
Peice notavailable, | X X The task-switch bit (TS) of CRO was set to 1.
240 General-Purpose

Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
Virtual
Exception Real | 8086 | Protected Description
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
General protection, X X X A memory address exceeded a data segment limit or
#GP was non-canonical.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.

x87 floating-point . : . .
exception pending, X X X An x87 floating-point exception was pending and the

AMF instruction referenced an MMX register.

: An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

General-Purpose 241
Instruction Reference

AMDZU

AMDG64 Technology

MOVMSKPD

24594—Rev. 3.32—March 2021

Extract Packed Double-Precision

Floating-Point Sign Mask

Moves the sign bits of two packed double-precision floating-point values in an XMM register (second
operand) to the two low-order bits of a general-purpose register (first operand) with zero-extension.

The function of the MOVMSKPD instruction is illustrated by the diagram below:

reg32 Xmm
3] 1*l0 127 63 0
o [[| |
| |
copy sign
‘ copy sign

movmskpd.eps

The MOVMSKPD instruction is an SSE2 instruction. Support for SSE2 instructions is indicated by
CPUID Fn0000 0001 EDX[SSE2]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Instruction Encoding

Mnemonic Opcode Description

Move sign bits 127 and 63 in an XMM register to a 32-bit

MOVMSKPD reg32, xmm general-purpose register.

66 OF 50 /r

Related Instructions

MOVMSKPS, PMOVMSKB

rFLAGS Affected

None

MXCSR Flags Affected

None

242 General-Purpose

Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
Exceptions
Virtual
Exception (vector) | Real | 8086 |Protected Cause of Exception
X X X SSEZ2 instructions are not supported, as indicated by
CPUID Fn0000_0001_EDX[SSEZ2] = 0.
Invalid opcode, #UD X X X The operating-system FXSAVE/FXRSTOR support bit

(OSFXSR) of CR4 was cleared to 0.
The emulate bit (EM) of CRO was set to 1.

Deyice notavaiable, | x X X | The task-switch bit (TS) of CRO was set to 1.

General-Purpose 243
Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

MOVMSKPS Extract Packed Single-Precision
Floating-Point Sign Mask

Moves the sign bits of four packed single-precision floating-point values in an XMM register (second
operand) to the four low-order bits of a general-purpose register (first operand) with zero-extension.

The MOVMSKPD instruction is an SSE2 instruction. Support for SSE2 instructions is indicated by
CPUID Fn0000 0001 _EDX[SSE2]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Opcode Description
Move sign bits 127, 95, 63, 31 in an XMM register to a

MOVMSKPS reg32, xmm OF 50 /r 32-bit general-purpose register.
reg32 xmm
31 0 0

— -~ <«

127 95 63 31
|l | | |
copy| sign copy| sign copy| sign copy| sign

movmskps.eps

Related Instructions

MOVMSKPD, PMOVMSKB

rFLAGS Affected

None

MXCSR Flags Affected

None

244 General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X SSE2 instructions are not supported, as indicated by
CPUID Fn0000_0001_EDX[SSEZ2] = 0.
Invalid opcode, #UD X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.
X X The emulate bit (EM) of CRO was set to 1.
Device not available, |y X X | The task-switch bit (TS) of CRO was set to 1.

#NM

General-Purpose
Instruction Reference

245

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021
MOVNTI Move Non-Temporal Doubleword or
Quadword

Stores a value in a 32-bit or 64-bit general-purpose register (second operand) in a memory location
(first operand). This instruction indicates to the processor that the data is non-temporal and is unlikely
to be used again soon. The processor treats the store as a write-combining (WC) memory write, which
minimizes cache pollution. The exact method by which cache pollution is minimized depends on the
hardware implementation of the instruction. For further information, see “Memory Optimization” in
Volume 1.

The MOVNTI instruction is weakly-ordered with respect to other instructions that operate on memory.
Software should use an SFENCE instruction to force strong memory ordering of MOVNTI with
respect to other stores.

The MOVNTTI instruction is an SSE2 instruction. Support for SSE2 instructions is indicated by
CPUID Fn0000 0001 _EDX[SSE2]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Opcode Description

Stores a 32-bit general-purpose register value into a 32-

MOVNTI mem32, reg32 OFC3/ bit memory location, minimizing cache pollution.

Stores a 64-bit general-purpose register value into a 64-
MOVNTI mem64, reg64 OF C3 /7 bit memory location, minimizing cache pollution.

Related Instructions

MOVNTDQ, MOVNTPD, MOVNTPS, MOVNTQ

rFLAGS Affected
None
Exceptions
Virtual
Exception (vector) | Real | 8086 |Protected Cause of Exception
: SSE2 instructions are not supported, as indicated by
Invalid opcode, #UD X X X | CPUID Fn0000_0001 EDX[SSE2] = 0.
A memory address exceeded the stack segment limit
Stack, #SS X X X or was non-canonical.
246 General-Purpose

Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

AMDG64 Technology

Virtual
Exception (vector) | Real | 8086 |Protected Cause of Exception
X X X A memory address exceeded a data segment limit or
was non-canonical.
gggeral protection, X A null data segment was used to reference memory.
X The destination operand was in a non-writable
segment.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

General-Purpose
Instruction Reference

247

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

MOVS Move String
MOVSB
MOVSW
MOVSD
MovSsQ

Moves a byte, word, doubleword, or quadword from the memory location pointed to by DS:rSI to the
memory location pointed to by ES:rDI, and then increments or decrements the rSI and rDI registers
according to the state of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments both pointers; otherwise, it decrements them. It
increments or decrements the pointers by 1, 2, 4, or 8, depending on the size of the operands.

The forms of the MOV Sx instruction with explicit operands address the first operand at seg:[rSI]. The
value of seg defaults to the DS segment, but can be overridden by a segment prefix. These instructions
always address the second operand at ES:[rDI] (ES may not be overridden). The explicit operands
serve only to specify the type (size) of the value being moved.

The no-operands forms of the instruction use the DS:[rSI] and ES:[rDI] registers to point to the value
to be moved (they do not allow a segment prefix). The mnemonic determines the size of the operands.

Do not confuse this MOVSD instruction with the same-mnemonic MOVSD (move scalar double-
precision floating-point) instruction in the 128-bit media instruction set. Assemblers can distinguish
the instructions by the number and type of operands.

The MOVSx instructions support the REP prefixes. For details about the REP prefixes, see “Repeat
Prefixes” on page 12.

Mnemonic Opcode Description

Move byte at DS:rSl to ES:rDl, and then increment or

MOVS mem8, mem8 A4 decrement rSl and rDlI.

Move word at DS:rSl to ES:rDl, and then increment or

MOVS mem16, mem16 AS decrement rSI and rDI.

NOVS memaz, mem3z S Mors doubloword ot DS 0§ and ther

MOVS mem64, mem64 A5 (l\)/lroalgc?g%devr\:?:gﬁ;r?clslibsl? to ES:rDl, and then increment

MOVSB Ad L\jﬂe%\lrzr%tr?t eratSPaSnaSrlDt? ES:rDl, and then increment or

MOVSW A5 I(\j/le%vrzr\;]vgrr]? raStlgidrSrIIDtlo ES:rDl, and then increment or
248 General-Purpose

Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

AMDG64 Technology

Mnemonic Opcode Description
Move doubleword at DS:rSl to ES:rDl, and then
MOVSD AS increment or decrement rS| and rDI.
Move quadword at DS:rSl to ES:rDlI, and then increment

MOVSQ AS or decrement rSl and rDI.
Related Instructions
MOV, LODSx, STOSx
rFLAGS Affected
None
Exceptions

Virtual
Exception Real| 8086 |Protected Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #3S X X X non-canonical.
A memory address exceeded a data segment limit or was non-
X X X :
; canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while

#AC alignment checking was enabled.

General-Purpose
Instruction Reference

249

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

MOVSX Move with Sign-Extension

Copies the value in a register or memory location (second operand) into a register (first operand),
extending the most significant bit of an 8-bit or 16-bit value into all higher bits in a 16-bit, 32-bit, or
64-bit register.

Mnemonic Opcode Description

Move the contents of an 8-bit register or memory

MOVSX reg16, reg/mem8 OF BE /# location to a 16-bit register with sign extension.

Move the contents of an 8-bit register or memory

MOVSX reg32, reg/mem8 OF BE/ location to a 32-bit register with sign extension.

MOVSX rog6s, og/moms OFBE/r MO lhe conents of an 8t egiter o merory
MOVSX rog3z, egimemis OFBF/r 1oue he conlsne o an 16l regster o memary
MOVSX reg64, reg/mem16 OF BF /r Move the contents of an 16-bit register or memory

location to a 64-bit register with sign extension.

Related Instructions

MOVSXD, MOVZX

rFLAGS Affected
None
Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #55 X X X non-canonical.
) X X X A memory address exceeded a data segment limit or was non-
General protection, canonical.
#GP
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, X An unaligned memory reference was performed while

#AC alignment checking was enabled.

250 General-Purpose

Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

MOVSXD Move with Sign-Extend Doubleword

Copies the 32-bit value in a register or memory location (second operand) into a 64-bit register (first
operand), extending the most significant bit of the 32-bit value into all higher bits of the 64-bit register.

This instruction requires the REX prefix 64-bit operand size bit (REX.W) to be set to 1 to sign-extend
a 32-bit source operand to a 64-bit result. Without the REX operand-size prefix, the operand size will
be 32 bits, the default for 64-bit mode, and the source is zero-extended into a 64-bit register. With a 16-
bit operand size, only 16 bits are copied, without modifying the upper 48 bits in the destination.

This instruction is available only in 64-bit mode. In legacy or compatibility mode this opcode is
interpreted as ARPL.

Mnemonic Opcode Description

Move the contents of a 32-bit register or memory

MOVSXD reg64, reg/mem32 63 /r operand to a 64-bit register with sign extension.

Related Instructions

MOVSX, MOVZX

rFLAGS Affected
None
Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
Stack, #SS X A memory address was non-canonical.
gggeral protection, X A memory address was non-canonical.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.
General-Purpose 251

Instruction Reference

AMDZU

AMDG64 Technology

MOVZX

24594—Rev. 3.32—March 2021

Move with Zero-Extension

Copies the value in a register or memory location (second operand) into a register (first operand), zero-
extending the value to fit in the destination register. The operand-size attribute determines the size of
the zero-extended value.

Mnemonic Opcode Description
Move the contents of an 8-bit register or memory
MOVZX reg16, reg/mem8 OF B6 operand to a 16-bit register with zero-extension.
Move the contents of an 8-bit register or memory
MOVZX reg32, reg/mem8 OF B6 /1 operand to a 32-bit register with zero-extension.
Move the contents of an 8-bit register or memory
MOVZX reg64, reg/memé OF B6 /r operand to a 64-bit register with zero-extension.
Move the contents of a 16-bit register or memory
MOVZX reg32, reg/mem16 OF B7 /r operand to a 32-bit register with zero-extension.
Move the contents of a 16-bit register or memory
MOVZX reg64, reg/mem16 OF B7 /r operand to a 64-bit register with zero-extension.
Related Instructions
MOVSXD, MOVSX
rFLAGS Affected
None
Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #55 X X X non-canonical.
G | brotect X X X A memory address exceeded a data segment limit or was non-
eneral protection, canonical.
#GP
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while

#AC

alignment checking was enabled.

252

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

MUL Unsigned Multiply

Multiplies the unsigned byte, word, doubleword, or quadword value in the specified register or
memory location by the value in AL, AX, EAX, or RAX and stores the result in AX, DX:AX,
EDX:EAX, or RDX:RAX (depending on the operand size). It puts the high-order bits of the product in
AH, DX, EDX, or RDX.

If the upper half of the product is non-zero, the instruction sets the carry flag (CF) and overflow flag
(OF) both to 1. Otherwise, it clears CF and OF to 0. The other arithmetic flags (SF, ZF, AF, PF) are
undefined.

Mnemonic Opcode Description
Multiplies an 8-bit register or memory operand by the
MUL reg/mem8 F6 /4 contents of the AL register and stores the result in the
AX register.

Multiplies a 16-bit register or memory operand by the
MUL reg/mem16 F7 /4 contents of the AX register and stores the result in the
DX:AX register.

Multiplies a 32-bit register or memory operand by the
MUL reg/mem32 F7 /4 contents of the EAX register and stores the result in the

EDX:EAX register.

Multiplies a 64-bit register or memory operand by the

MUL reg/mem64 F7 /4 contents of the RAX register and stores the result in the
RDX:RAX register.

Related Instructions

DIV

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF

M u u U u M
21 120 | 19 | 18 | 17 | 16 | 14 13:12 1110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

General-Purpose 253
Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
A memory address exceeded the stack segment limit or was

Stack, #5S X X X non-canonical.

. X X X A memory address exceeded a data segment limit or was non-
General protection, canonical.
#GP

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference is performed while alignment

#AC

checking was enabled.

254

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

MULX Multiply Unsigned

Computes the unsigned product of the specified source operand and the implicit source operand rDX.
Writes the upper half of the product to the first destination and the lower half to the second. Does not
affect the arithmetic flags.
This instruction has three operands:

MULX dest1, dest2, src

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64 bits; if VEX.W is 0, the operand size is 32 bits. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The first and second operands (dest! and dest2) are general purpose registers. The specified source
operand (src) is either a general purpose register or a memory operand. If the first and second operands
specify the same register, the register receives the upper half of the product.

This instruction is a BMI2 instruction. Support for this instruction is indicated by CPUID
Fn0000 0007 EBX x0[BMI2]= 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
MULX reg32, reg32, reg/mem32 C4 RXB.02 0.dest2.0.11 F6 /r
MULX reg64, reg64, reg/mem64 C4 RXB.02 1.dest2.0.11 F6 /r

Related Instructions

rFLAGS Affected
None.
Exceptions
Exception Virtual Cause of Exception
Real| 8086 |Protected
X X BMI2 instructions are only recognized in protected mode.

. BMI2 instructions are not supported, as indicated by
Invalid opcode, #UD X | CPUID Fn0000_0007_EBX_xO[BMI2] = 0.

X VEX.Lis 1.

General-Purpose 255
Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

. Virtual .
Exception Real| 8086 [Protected Cause of Exception
A memory address exceeded the stack segment limit or

Stack, #5S X was non-canonical.

X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.

X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while

alignment checking was enabled.

256

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

MWAITX Monitor Wait with Timeout

Used in conjunction with the MONITORX instruction to cause a processor to wait until a store occurs
to a specific linear address range from another processor or the timer expires. The previously executed
MONITORX instruction causes the processor to enter the monitor event pending state. The MWAITX
instruction may enter an implementation dependent power state until the monitor event pending state
is exited. The MWAITX instruction has the same effect on architectural state as the NOP instruction.

Events that cause an exit from the monitor event pending state include:

* A store from another processor matches the address range established by the MONITORX
instruction.

e The timer expires.

* Any unmasked interrupt, including INTR, NMI, SMI, INIT.

* RESET.

* Any far control transfer that occurs between the MONITORX and the MWAITX.

EAX specifies optional hints for the MWAITX instruction. Optimized C-state request is
communicated through EAX][7:4]. The processor C-state is EAX[7:4]+1, so to request CO is to place
the value F in EAX][7:4] and to request C1 is to place the value 0 in EAX][7:4]. All other components of

EAX should be zero when making the C1 request. Setting a reserved bit in EAX is ignored by the
processor. This is implicitly a 32-bit operand.

ECX specifies optional extensions for the MWAITX instruction. The extensions currently defined for
ECX are:

* Bit 0: When set, allows interrupts to wake MWAITX, even when eFLAGS.IF = 0. Support for this
extension is indicated by a feature flag returned by the CPUID instruction.

* Bit 1: When set, EBX contains the maximum wait time expressed in Software PO clocks, the same
clocks counted by the TSC. Setting bit 1 but passing in a value of zero on EBX is equivalent to
setting bit 1 to a zero. The timer will not be an exit condition.

e Bit 31-2: When non-zero, results in a #GP(0) exception.

This is implicitly a 32-bit operand.

CPUID Function 0000 _0005h indicates support for extended features of MONITORX/MWAITX as
well as MONITOR/MWAIT:

e CPUID Fn0000 0005 ECX[EMX] = 1 indicates support for enumeration of
MONITOR/MWAIT/MONITORX/MWAITX extensions.

e CPUID Fn0000 0005 ECX[IBE] =1 indicates that MWAIT/MWAITX can set ECX[0] to allow
interrupts to cause an exit from the monitor event pending state even when eFLAGS.IF = 0.

The MWAITX instruction can be executed at any privilege level and MSR
C001_0015h[MonMwaitUserEn] has no effect on MWAITX.

General-Purpose 257
Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

Support for the MWAITX instruction is indicated by CPUID Fn8000 0001 ECX[MONITORX] (bit
29)=1.

Software must check the CPUID bit once per program or library initialization before using the
MWAITX instruction, or inconsistent behavior may result.

The use of the MWAITX instruction is contingent upon the satisfaction of the following coding
requirements:

* MONITORX must precede the MWAITX and occur in the same loop.

* MWAITX must be conditionally executed only if the awaited store has not already occurred. (This
prevents a race condition between the MONITORX instruction arming the monitoring hardware
and the store intended to trigger the monitoring hardware.)

There is no indication after exiting MWAITX of why the processor exited or if the timer expired. It is
up to software to check whether the awaiting store has occurred, and if not, determining how much
time has elapsed if it wants to re-establish the MONITORX with a new timer value.

Mnemonic Opcode Description

Causes the processor to stop
instruction execution and enter

MWAITX 0F 01 FB an implementation-dependent
optimized state until occurrence
of a class of events

Related Instructions

MONITORX, MONITOR, MWAIT

rFLAGS Affected
None

Exceptions

Virtual
Exception Real| 8086 |Protected Cause of Exception

Invalid opcode, X X X MONITORX/MWAITX instructions are not supported, as

#UD indicated by CPUID Fn8000_0001_ECX[MONITORX] =0

gggeral protection, X X X Unsupported extension bits in ECX

258 General-Purpose

Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

General-Purpose 259
Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

NEG Two’s Complement Negation

Performs the two’s complement negation of the value in the specified register or memory location by
subtracting the value from 0. Use this instruction only on signed integer numbers.

If the value is 0, the instruction clears the CF flag to 0; otherwise, it sets CF to 1. The OF, SF, ZF, AF,
and PF flag settings depend on the result of the operation.

The forms of the NEG instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

Mnemonic Opcode Description

F6 /3 Performs a two’s complement negation on an 8-bit

NEG reg/mem8 register or memory operand.

F7/3 Performs a two’s complement negation on a 16-bit

NEG reg/mem16 register or memory operand.

Performs a two’s complement negation on a 32-bit

NEG reg/mem32 F71/3 register or memory operand.

Performs a two’s complement negation on a 64-bit

NEG reg/mem64 F7/3 register or memory operand.

Related Instructions
AND, NOT, OR, XOR
rFLAGS Affected

ID | VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M M M M

21 | 20 | 19 | 18 | 17 | 16 | 14 13:12 1110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

260 General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was

non-canonical.

A memory address exceeded a data segment limit or was non-

. X X X canonical.
General protection,
#GP X The destination operand is in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
General-Purpose 261

Instruction Reference

AMDZU

AMDG64 Technology

NOP

24594—Rev. 3.32—March 2021

No Operation

Does nothing. This instruction increments the rIP to point to next instruction, but does not affect the

machine state in any other way.

The single-byte variant is an alias for XCHG rAX, rAX.

Mnemonic
NOP

NOP reg/mem16
NOP reg/mem32

NOP reg/mem64

Related Instructions

None

rFLAGS Affected

None

Exceptions

None

Opcode
90

OF 1F /0
OF 1F /0

OF 1F /0

Description
Performs no operation.

Performs no operation on a 16-bit register or memory
operand.

Performs no operation on a 32-bit register or memory
operand.

Performs no operation on a 64-bit register or memory
operand.

262

General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

NOT

AMDG64 Technology

One’s Complement Negation

Performs the one’s complement negation of the value in the specified register or memory location by
inverting each bit of the value.

The memory-operand forms of the NOT instruction support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

Mnemonic Opcode Description
Complements the bits in an 8-bit register or memory
NOT reg/mem8 F6 /2 operand.
Complements the bits in a 16-bit register or memory
NOT reg/mem16 F7 /2 operand.
Complements the bits in a 32-bit register or memory
NOT reg/mem32 F7/2 operand.
Compliments the bits in a 64-bit register or memory
NOT reg/mem64 F7 /2 operand.
Related Instructions
AND, NEG, OR, XOR
rFLAGS Affected
None
Exceptions
Virtual
Exception Real| 8086 [Protected Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #5S X X X non-canonical.
A memory address exceeded a data segment limit or was non-
X X X A
. canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference is performed while alignment
#AC checking was enabled.

General-Purpose
Instruction Reference

263

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

OR Logical OR

Performs a logical or on the bits in a register, memory location, or immediate value (second operand)
and a register or memory location (first operand) and stores the result in the first operand location. The
two operands cannot both be memory locations.

If both corresponding bits are 0, the corresponding bit of the result is 0; otherwise, the corresponding
result bit is 1.

The forms of the OR instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

Mnemonic Opcode Description
OR AL, imm8 0Cib or the contents of AL with an immediate 8-bit value.
ORAX, imm16 0D iw or the contents of AX with an immediate 16-bit value.
OR EAX, imm32 0D id or the contents of EAX with an immediate 32-bit value.
OR RAX. imm32 oD id or the contents of RAX with a sign-extended immediate
’ 32-bit value.
OR reg/mem8, imm8 80 /1 ib or the contents of an 8-bit register or memory operand

and an immediate 8-bit value.

81 /1 iw or the contents of a 16-bit register or memory operand

OR reg/mem16, imm16 and an immediate 16-bit value.

OR reg/mem32, imm32 81 /1 id or the contents of a 32-bit register or memory operand
' and an immediate 32-bit value.

OR reg/mem64, imm32 81 /1 id or the contents of a 64-bit register or memory operand
’ and sign-extended immediate 32-bit value.

OR reg/mem16, imm8 83/1ib or the contents of a 16-bit register or memory operand
’ and a sign-extended immediate 8-bit value.

83/1ib or the contents of a 32-bit register or memory operand

OR reg/mem32, imm8& and a sign-extended immediate 8-bit value.

OR reg/memé64, imm8 83/1ib or the contents of a 64-bit register or memory operand
’ and a sign-extended immediate 8-bit value.

08 /r or the contents of an 8-bit register or memory operand

OR reg/mems, reg8 with the contents of an 8-bit register.

09 /r or the contents of a 16-bit register or memory operand

OR reg/mem16, reg16 with the contents of a 16-bit register.

or the contents of a 32-bit register or memory operand
OR reg/mem32, reg32 09/ with the contents of a 32-bit register.

or the contents of a 64-bit register or memory operand
OR reg/mem64, reg64 09 /r with the contents of a 64-bit register.

264 General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
Mnemonic Opcode Description
OR reg8, reg/mem8 0A /r or the contents of an 8-bit register with the contents of

an 8-bit register or memory operand.

or the contents of a 16-bit register with the contents of

OR reg16, reg/mem16 0B /r a 16-bit register or memory operand.

OR reg32, reg/mem32 0B /r or the contents of a 32-bit register with the contents of
’ a 32-bit register or memory operand.

OR reg64, reg/mem64 0B /r or the contents of a 64-bit register with the contents of

a 64-bit register or memory operand.

The following chart summarizes the effect of this instruction:

X Y XorY
0 0
0 1 1
1 0 1
1 1 1
Related Instructions
AND, NEG, NOT, XOR
rFLAGS Affected
ID [VIP| VIF|AC |VM | RF [NT | IOPL | OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M|U|M]|O

21 120 |19 | 18 | 17 | 16 | 14 13:12 1 110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #5S X X X non-canonical.
A memory address exceeded a data segment limit or was non-
X X X A
; canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
General-Purpose 265

Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

#AC

Virtual
Exception Real| 8086 |Protected Cause of Exception
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while

alignment checking was enabled.

266

General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

OuT

AMDG64 Technology

Output to Port

Copies the value from the AL, AX, or EAX register (second operand) to an I/O port (first operand).
The port address can be a byte-immediate value (00h to FFh) or the value in the DX register (0000h to
FFFFh). The source register used determines the size of the port (8, 16, or 32 bits).

If the operand size is 64 bits, OUT only writes to a 32-bit I/O port.

If the CPL is higher than the IOPL or the mode is virtual mode, OUT checks the I/O permission bitmap
in the TSS before allowing access to the I/O port. See Volume 2 for details on the TSS I/O permission

bitmap.
Mnemonic Opcode Description
. . Output the byte in the AL register to the port specified by
OUT imm8, AL E6 ib an 8-bit immediate value.
: : Output the word in the AX register to the port specified
OUT imm8, AX E7ib by an 8-bit immediate value.
. . Output the doubleword in the EAX register to the port
OUT imm8, EAX E7 ib specified by an 8-bit immediate value.
OUT DX, AL EE Output byte in AL to the output port specified in DX.
OUT DX, AX EF Output word in AX to the output port specified in DX.
OUT DX. EAX EF Output doubleword in EAX to the output port specified in
' DX.
Related Instructions
IN, INSx, OUTSx
rFLAGS Affected
None
Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
X One or more I/O permission bits were set in the TSS for the
General protection, accessed port.
#GP X The CPL was greater than the IOPL and one or more I/O
permission bits were set in the TSS for the accessed port.
Page fault (#PF) X X A page fault resulted from the execution of the instruction.

General-Purpose

Instruction Reference

267

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021
OuUTS Output String
OUTSB
ouUTsSwW
OUTSD

Copies data from the memory location pointed to by DS:rSI to the I/O port address (0000h to FFFFh)
specified in the DX register, and then increments or decrements the rSI register according to the setting
of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments rSI; otherwise, it decrements rSI. It increments or
decrements the pointer by 1, 2, or 4, depending on the size of the value being copied.

The OUTS DX mnemonic uses an explicit memory operand (second operand) to determine the type
(size) of the value being copied, but always uses DS:rSI for the location of the value to copy. The
explicit register operand (first operand) specifies the I/O port address and must always be DX.

The no-operands forms of the mnemonic use the DS:rSI register pair to point to the memory data to be
copied and the contents of the DX register as the destination I/O port address. The mnemonic specifies
the size of the I/O port and the type (size) of the value being copied.

The OUTSx instruction supports the REP prefix. For details about the REP prefix, see “Repeat
Prefixes” on page 12.

If the effective operand size is 64-bits, the instruction behaves as if the operand size were 32 bits.

If the CPL is higher than the IOPL or the mode is virtual mode, OUTSx checks the I/O permission
bitmap in the TSS before allowing access to the I/O port. See Volume 2 for details on the TSS I/O
permission bitmap.

Mnemonic Opcode Description

6E Output the byte in DS:rSl to the port specified in DX,

OUTS DX, mem8 then increment or decrement rSl.

Output the word in DS:rSl to the port specified in DX,

OUTS DX, mem16 6F then increment or decrement rSI.

OUTS DX, memaz oF
 BRmben Bl eig e et oX
outsw oF Qutputthe word n D19 1o the port spcifed n DX,
oF
268 General-Purpose

Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

Related Instructions

AMDG64 Technology

IN, INSx, OUT
rFLAGS Affected
None
Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #5S X X X non-canonical.
X X X A memory address exceeded a data segment limit or was non-
canonical.
i X A null data segment was used to reference memory.
General protection, — - -
#GP X One or more I/O permission bits were set in the TSS for the
accessed port.
X The CPL was greater than the IOPL and one or more 1/0
permission bits were set in the TSS for the accessed port.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference is performed while alignment
#AC checking was enabled.

General-Purpose
Instruction Reference

269

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

PAUSE Pause

Improves the performance of spin loops, by providing a hint to the processor that the current code is in
a spin loop. The processor may use this to optimize power consumption while in the spin loop.

Architecturally, this instruction behaves like a NOP instruction.

Processors that do not support PAUSE treat this opcode as a NOP instruction.

Mnemonic Opcode Description

Provides a hint to processor that a spin loop is being

PAUSE F3 90 executed.

Related Instructions

None

rFLAGS Affected

None

Exceptions

None

270 General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

PDEP Parallel Deposit Bits

Scatters consecutive bits of the first source operand, starting at the least significant bit, to bit positions
in the destination as specified by 1 bits in the second source operand (mask). Bit positions in the
destination corresponding to 0 bits in the mask are cleared.

This instruction has three operands:

PDEP dest, src, mask

The following diagram illustrates the operation of this instruction.

rt))—1 SIc
91 eee (0 [b6|b5(b4| 0|0 [b3{b2{0b1|{0|0|0|b0OfO|O dest
t e e N o e G o o o

m eee |O(1|1T|1|0O|]O|1T]1]O0O|1T]0O|O0O|O0O|1T]|]0]O mask

v3_PDEP_instruct.eps

If the mask is all ones, the execution of this instruction effectively copies the source to the destination.

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX. W is 1, the operand
size is 64 bits; if VEX.W is 0, the operand size is 32 bits. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) and the source (src) are general-purpose registers. The second source operand
(mask) s either a general-purpose register or a memory operand.

This instruction is a BMI2 instruction. Support for this instruction is indicated by CPUID
Fn0000 0007 EBX xO[BMI2]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

PDEP reg32, reg32, reg/mem32 C4 RXB.02 0.src.0.11 F5/r
PDEP reg64, reg64, reg/mem64 C4 RXB.02 1.src.0.11 F5/r
General-Purpose 271

Instruction Reference

AMDZU

AMDG64 Technology

Related Instructions

24594—Rev. 3.32—March 2021

rFLAGS Affected
None.
Exceptions
Mode
Exception Virtual Cause of Exception
Real| 8086 [Protected
X X BMI2 instructions are only recognized in protected mode.
; BMI2 instructions are not supported, as indicated by
Invalid opcode, #UD X | CPUID Fn0000_0007 EBX_xO[BMI2] = 0.
VEX.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #55 X was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while

alignment checking was enabled.

272

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

PEXT Parallel Extract Bits

Copies bits from the source operand, based on a mask, and packs them into the low-order bits of the
destination. Clears all bits in the destination to the left of the most-significant bit copied.

This instruction has three operands:
PEXT dest, src, mask

The following diagram illustrates the operation of this instruction.

Mleee|O|1[1]|1|0O]|O|1][1|0O][1]|0[0O]|O0O|1]0 0| mask
% vV vV Y A A 4 A 4 A 4
Dl oo p15p14p13[p12]b11|010| b9 | b8 | b7 | b6 | b5 | b4 |b3|b2|b1|bO| src

=

O) eee[([0O|0|0O|0O[0O|0]|0|0]O0 b14b13b12[b9 |b8|b6 |b2 dest
n-1 %5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

v3_PEXT _instruct.eps

If the mask is all ones, the execution of this instruction effectively copies the source to the destination.

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64 bits; if VEX.W is 0, the operand size is 32 bits. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) and the source (src) are general-purpose registers. The second source operand
(mask) is either a general-purpose register or a memory operand.

This instruction is a BMI2 instruction. Support for this instruction is indicated by CPUID
Fn0000 0007 _EBX x0[BMI2]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

PEXT reg32, reg32, reg/mem32 C4 RXB.02 0.src.0.10 F5/r
PEXT reg64, reg64, reg/mem64 C4 RXB.02 1.src.0.10 F5/r
General-Purpose 273

Instruction Reference

AMDZU

AMDG64 Technology

Related Instructions

24594—Rev. 3.32—March 2021

rFLAGS Affected
None.
Exceptions
Mode
Exception Virtual Cause of Exception
Real| 8086 [Protected
X X BMI2 instructions are only recognized in protected mode.
; BMI2 instructions are not supported, as indicated by
Invalid opcode, #UD X | CPUID Fn0000_0007 EBX_xO[BMI2] = 0.
VEX.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #55 X was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while

alignment checking was enabled.

274

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

POP Pop Stack

Copies the value pointed to by the stack pointer (SS:rSP) to the specified register or memory location
and then increments the rSP by 2 for a 16-bit pop, 4 for a 32-bit pop, or 8 for a 64-bit pop.

The operand-size attribute determines the amount by which the stack pointer is incremented (2, 4 or 8
bytes). The stack-size attribute determines whether SP, ESP, or RSP is incremented.

For forms of the instruction that load a segment register (POP DS, POP ES, POP FS, POP GS, POP
SS), the source operand must be a valid segment selector. When a segment selector is popped into a
segment register, the processor also loads all associated descriptor information into the hidden part of
the register and validates it.

It is possible to pop a null segment selector value (0000—0003h) into the DS, ES, FS, or GS register.
This action does not cause a general protection fault, but a subsequent reference to such a segment
does cause a #GP exception. For more information about segment selectors, see "Segment Selectors
and Registers" in Volume 2: System Programming.

In 64-bit mode, the POP operand size defaults to 64 bits and there is no prefix available to encode a 32-
bit operand size. Using POP DS, POP ES, or POP SS instruction in 64-bit mode generates an invalid-
opcode exception.

This instruction cannot pop a value into the CS register. The RET (Far) instruction performs this
function.

Mnemonic Opcode Description
POP reg/mem16 8F /0 E)%gggﬁ top of the stack into a 16-bit register or memory

Pop the top of the stack into a 32-bit register or memory
POP reg/mem32 8F /0 location.
(No prefix for encoding this in 64-bit mode.)

Pop the top of the stack into a 64-bit register or memory

POP reg/mem64 8F /0 location
POP reg16 58 +rw Pop the top of the stack into a 16-bit register.
Pop the top of the stack into a 32-bit register.
POP reg32 58 +rd (No prefix for encoding this in 64-bit mode.)
POP reg64 58 +rq Pop the top of the stack into a 64-bit register.
Pop the top of the stack into the DS register.
POPDS 1F (Invalid in 64-bit mode.)
Pop the top of the stack into the ES register.
POPES 07 (Invalid in 64-bit mode.)
Pop the top of the stack into the SS register.
POP SS 17 (Invalid in 64-bit mode.)
General-Purpose 275

Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

Mnemonic Opcode Description
POP FS OF A1 Pop the top of the stack into the FS register.
POP GS OF A9 Pop the top of the stack into the GS register.
Related Instructions
PUSH
rFLAGS Affected
None
Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
invalid opcode, X | POP DS, POP ES, or POP SS was executed in 64-bit mode.
Segment not The DS, ES, FS, or GS register was loaded with a non-null
present, #NP X
(selector) segment selector and the segment was marked not present.
A memory address exceeded the stack segment limit or was
Stack, #3S X X X non-canonical.
Stack, #SS X The SS register was loaded with a non-null segment selector
(selector) and the segment was marked not present.
X X X A memory address exceeded a data segment limit or was non-
General protection, canonical.
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
X A segment register was loaded and the segment descriptor
exceeded the descriptor table limit.
X A segment register was loaded and the segment selector’s Tl
bit was set, but the LDT selector was a null selector.
X The SS register was loaded with a null segment selector in
non-64-bit mode or while CPL = 3.
General protection, X The SS register was loaded and the segment selector RPL
#GP and the segment descriptor DPL were not equal to the CPL.
(selector) X The SS register was loaded and the segment pointed to was
not a writable data segment.
The DS, ES, FS, or GS register was loaded and the segment
X pointed to was a data or non-conforming code segment, but
the RPL or the CPL was greater than the DPL.
The DS, ES, FS, or GS register was loaded and the segment
pointed to was not a data segment or readable code segment.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.

276

General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

POPA
POPAD

AMDG64 Technology

POP All GPRs

Pops words or doublewords from the stack into the general-purpose registers in the following order:
eDI, eSI, eBP, eSP (image is popped and discarded), eBX, eDX, eCX, and eAX. The instruction
increments the stack pointer by 16 or 32, depending on the operand size.

Using the POPA or POPAD instructions in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description
Pop the DI, SI, BP, SP, BX, DX, CX, and AX registers.
POPA 61 (Invalid in 64-bit mode.)
Pop the EDI, ESI, EBP, ESP, EBX, EDX, ECX, and EAX
POPAD 61 registers.
(Invalid in 64-bit mode.)
Related Instructions
PUSHA, PUSHAD
rFLAGS Affected
None
Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
I(;\(Jalg()j opcode This instruction was executed in 64-bit mode.
Stack, #SS X X X A memory address exceeded the stack segment limit.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while

#AC

alignment checking was enabled.

General-Purpose
Instruction Reference

277

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

POPCNT Bit Population Count

Counts the number of bits having a value of 1 in the source operand and places the result in the
destination register. The source operand is a 16-, 32-, or 64-bit general purpose register or memory
operand; the destination operand is a general purpose register of the same size as the source operand
register.

If the input operand is zero, the ZF flag is set to 1 and zero is written to the destination register.
Otherwise, the ZF flag is cleared. The other flags are cleared.

Support for the POPCNT instruction is indicated by CPUID Fn0000 0001 ECX[POPCNT] = 1.
Software MUST check the CPUID bit once per program or library initialization before using the
POPCNT instruction, or inconsistent behavior may result.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Opcode Description

POPCNT reg16, reg/mem16 F3 OF B8 /r Count the 1s in reg/mem16.
POPCNT reg32, reg/mem32 F3 OF B8 /r Count the 1s in reg/mem32.
POPCNT reg64, reg/mem64 F3 OF B8 /r Count the 1s in reg/mem64.

Related Instructions

BSF, BSR, LZCNT

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF

0 0 M 0 0 0

21 | 20 | 19 | 18 | 17 | 16 | 14 13:12 1 110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

278 General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

AMDG64 Technology

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
Invalid opcode, X X X The POPCNT instruction is not supported, as indicated by
#UD CPUID Fn0000_0001_ECX[POPCNT].
A memory address exceeded the stack segment limit or was
Stack, #5S X X X non-canonical.
. X X X A memory address exceeded a data segment limit or was non-

General protection, canonical.

#GP

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while

#AC

alignment checking was enabled.

General-Purpose
Instruction Reference

279

AMDZU

AMDG64 Technology

POPF
POPFD
POPFQ

24594—Rev. 3.32—March 2021

POP to rFLAGS

Pops a word, doubleword, or quadword from the stack into the rFLAGS register and then increments
the stack pointer by 2, 4, or 8, depending on the operand size.

In protected or real mode, all the non-reserved flags in the rFLAGS register can be modified, except
the VIP, VIF, and VM flags, which are unchanged. In protected mode, at a privilege level greater than
0 the IOPL is also unchanged. The instruction alters the interrupt flag (IF) only when the CPL is less

than or equal to the IOPL.

In virtual-8086 mode, if IOPL field is less than 3, attempting to execute a POPFx or PUSHFx
instruction while VME is not enabled, or the operand size is not 16-bit, generates a #GP exception.

In 64-bit mode, this instruction defaults to a 64-bit operand size; there is no prefix available to encode

a 32-bit operand size.

Mnemonic
POPF

POPFD

POPFQ

Action

Opcode

9D

9D

9D

Description

Pop a word from the stack into the FLAGS register.

Pop a double word from the stack into the EFLAGS
register. (No prefix for encoding this in 64-bit mode.)

Pop a quadword from the stack to the RFLAGS register.

// See “Pseudocode Definition” on page 57.

POPF START:

IF (REAL_ MODE)
POPF REAL

ELSIF (PROTECTED MODE)

POPF PROTECTED

ELSE // (VIRTUAL MODE)

POPF VIRTUAL

POPF REAL:

POP.v temp RFLAGS
RFLAGS.v = temp RFLAGS

EXIT

// VIF,VIP,VM unchanged

// RF cleared

280

General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

POPF PROTECTED:

POP.v temp RFLAGS
RFLAGS.v = temp RFLAGS

EXIT

POPF VIRTUAL:

IF (RFLAGS.IOPL==3)

{
POP.v temp RFLAGS

RFLAGS.v = temp RFLAGS
EXIT

}

ELSIF ((CR4.VME==1) &&

{
POP.w temp RFLAGS

AMDG64 Technology

// VIF,VIP,VM unchanged
// IOPL changed only if

// IF changed only if
// RF cleared

(CPL==0)
(CPL<=0ld RFLAGS.IOPL)

// VIF,VIP,VM, IOPL unchanged
// RF cleared

(OPERAND_ SIZE==16))

IF (((temp_RFLAGS.IF::) && (RFLAGS.VIP==1)) || (temp_RFLAGS.TF::))
EXCEPTION [#GP(0)]
// notify the virtual-mode-manager to
deliver
// the task’s pending interrupts
RFLAGS.w = temp RFLAGS // IF,IOPL unchanged
// RFLAGS.VIF=temp RFLAGS.IF
// RF cleared
EXIT
}
ELSE // ((RFLAGS.IOPIL<3) && ((CR4.VME==0) || (OPERAND_SIZE!:16)))
EXCEPTION [#GP(0)]
Related Instructions
PUSHF, PUSHFD, PUSHFQ
rFLAGS Affected
ID |VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF

M M M 0 M M

M M M M M M M M M

21 120 | 19 | 18 | 17 | 16 | 14 13:12

1110 | 9 8 7 6 4 2 0

Undefined flags are U.

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.

General-Purpose
Instruction Reference

281

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception

A memory address exceeded the stack segment limit or was

Stack, #5S X X X non-canonical.
The /O privilege level was less than 3 and one of the following
conditions was true:

_ * CR4.VME was 0.

gggeral protection, X + The effective operand size was 32-bit.

» Both the original EFLAGS.VIP and the new EFLAGS.IF bits
were set.
e The new EFLAGS.TF bit was set.
Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check,
#AC

An unaligned memory reference was performed while
alignment checking was enabled.

282

General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
PREFETCH Prefetch L1 Data-Cache Line
PREFETCHW

Loads the entire 64-byte aligned memory sequence containing the specified memory address into the
L1 data cache. The position of the specified memory address within the 64-byte cache line is
irrelevant. If a cache hit occurs, or if a memory fault is detected, no bus cycle is initiated and the
instruction is treated as a NOP.

The PREFETCHW instruction loads the prefetched line and sets the cache-line state to Modified, in
anticipation of subsequent data writes to the line. The PREFETCH instruction, by contrast, typically
sets the cache-line state to Exclusive (depending on the hardware implementation).

The opcodes for the PREFETCH/PREFETCHW instructions include the ModRM byte; however, only
the memory form of ModRM is valid. The register form of ModRM causes an invalid-opcode
exception. Because there is no destination register, the three destination register field bits of the
ModRM byte define the type of prefetch to be performed. The bit patterns 000b and 001b define the
PREFETCH and PREFETCHW instructions, respectively. All other bit patterns are reserved for future
use.

The reserved PREFETCH types do not result in an invalid-opcode exception if executed. Instead, for
forward compatibility with future processors that may implement additional forms of the PREFETCH
instruction, all reserved PREFETCH types are implemented as synonyms of the basic PREFETCH
type (the PREFETCH instruction with type 000b).

The operation of these instructions is implementation-dependent. The processor implementation can
ignore or change these instructions. The size of the cache line also depends on the implementation,
with a minimum size of 32 bytes. For details on the use of this instruction, see the processor data sheets
or other software-optimization documentation relating to particular hardware implementations.

When paging is enabled and PREFETCHW performs a prefetch from a writable page, it may set the
PTE Dirty bitto 1.

Support for the PREFETCH and PREFETCHW instructions is indicated by CPUID
Fn8000 0001 ECX[3DNowPrefetch] OR Fn8000 0001 EDX[LM] OR
Fn8000 0001 EDX[3DNow]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Opcode Description
PREFETCH mem8 OF OD /O Prefetch processor cache line into L1 data cache.
PREFETCHW mem8 OF 0D /1 Prefetch processor cache line into L1 data cache and

mark it modified.

General-Purpose 283
Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

Related Instructions

PREFETCH/evel
rFLAGS Affected
None
Exceptions
Virtual
Exception (vector) Real | 8086 |Protected Cause of Exception
PREFETCH and PREFETCHW instructions are not
supported, as indicated by CPUID
. X X X Fn8000_0001_ECX[3DNowPrefetch] AND
Invalid opcode, #UD Fn8000_0001_EDX[LM] AND
Fn8000_0001_EDX[3DNow] = 0.
X X X The operand was a register.
284 General-Purpose

Instruction Reference

AMDZ\
AMDG64 Technology

24594—Rev. 3.32—March 2021

PREFETCHI/evel Prefetch Data to Cache Level level

Loads a cache line from the specified memory address into the data-cache level specified by the
locality reference bits 5:3 of the ModRM byte. Table 3-3 on page 279 lists the locality reference
options for the instruction.

This instruction loads a cache line even if the mem8 address is not aligned with the start of the line. If
the cache line is already contained in a cache level that is lower than the specified locality reference, or
if a memory fault is detected, a bus cycle is not initiated and the instruction is treated as a NOP.

The operation of this instruction is implementation-dependent. The processor implementation can
ignore or change this instruction. The size of the cache line also depends on the implementation, with a
minimum size of 32 bytes. AMD processors alias PREFETCH1 and PREFETCH2 to PREFETCHO.
For details on the use of this instruction, see the software-optimization documentation relating to
particular hardware implementations.

Mnemonic Opcode Description
PREFETCHNTA mem8 OF 18 /0 ll}g?e\/grc]igéé closer to the processor using the NTA
PREFETCHTO mems8 OF 18 /1 rl\g?gr?ar?gttf closer to the processor using the TO
PREFETCHT1 mems8 OF 18 /2 rl\g?gr?ar?géé closer to the processor using the T1
PREFETCHT2 mems8 OF 18 /3 Move data closer to the processor using the T2

reference.

Table 3-3. Locality References for the Prefetch Instructions

Locality

Reference Description

Non-Temporal Access—Move the specified data into the processor with
minimum cache pollution. This is intended for data that will be used only
once, rather than repeatedly. The specific technique for minimizing cache
NTA pollution is implementation-dependent and may include such techniques
as allocating space in a software-invisible buffer, allocating a cache line in
only a single way, etc. For details, see the software-optimization
documentation for a particular hardware implementation.

TO All Cache Levels—Move the specified data into all cache levels.

T1 Level 2 and Higher—Move the specified data into all cache levels except
Oth level (L1) cache.

T Level 3 and Higher—Move the specified data into all cache levels except

Oth level (L1) and 1st level (L2) caches.

Related Instructions

PREFETCH, PREFETCHW

General-Purpose
Instruction Reference

285

AMDZU

AMDG64 Technology

rFLAGS Affected

None

Exceptions

None

24594—Rev. 3.32—March 2021

286

General-Purpose
Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

PUSH Push onto Stack

Decrements the stack pointer and then copies the specified immediate value or the value in the
specified register or memory location to the top of the stack (the memory location pointed to by
SS:rSP).

The operand-size attribute determines the number of bytes pushed to the stack. The stack-size attribute
determines whether SP, ESP, or RSP is the stack pointer. The address-size attribute is used only to
locate the memory operand when pushing a memory operand to the stack.

If the instruction pushes the stack pointer (rSP), the resulting value on the stack is that of rSP before
execution of the instruction.

There is a PUSH CS instruction but no corresponding POP CS. The RET (Far) instruction pops a value
from the top of stack into the CS register as part of its operation.

In 64-bit mode, the operand size of all PUSH instructions defaults to 64 bits, and there is no prefix
available to encode a 32-bit operand size. Using the PUSH CS, PUSH DS, PUSH ES, or PUSH SS
instructions in 64-bit mode generates an invalid-opcode exception.

Pushing an odd number of 16-bit operands when the stack address-size attribute is 32 results in a
misaligned stack pointer.

Mnemonic Opcode Description

FF /6 Push the contents of a 16-bit register or memory

PUSH reg/mem16 operand onto the stack.

Push the contents of a 32-bit register or memory

PUSH reg/mem32 FF /6 operand onto the stack. (No prefix for encoding this in
64-bit mode.)
Push the contents of a 64-bit register or memory
PUSH reg/mem64 FF /6 operand onto the stack.
PUSH reg16 50 +rw Push the contents of a 16-bit register onto the stack.
Push the contents of a 32-bit register onto the stack. (No
PUSH reg32 50 +rd prefix for encoding this in 64-bit mode.)
PUSH reg64 50 +rq Push the contents of a 64-bit register onto the stack.
. . Push an 8-bit immediate value (sign-extended to 16, 32,
PUSH imm8 6A ib or 64 bits) onto the stack.
PUSH imm16 68 iw Push a 16-bit immediate value onto the stack.
; . Push a 32-bit immediate value onto the stack. (No prefix
PUSH imm32 68 id for encoding this in 64-bit mode.)
PUSH imm64 68 id SPtL;?:rll a sign-extended 32-bit immediate value onto the
PUSH CS OE Push the CS selector onto the stack. (Invalid in 64-bit
mode.)
General-Purpose 287

Instruction Reference

AMDZU

AMDG64 Technology

24594—Rev. 3.32—March 2021

Mnemonic Opcode Description
PUSH SS 16 Push the SS selector onto the stack. (Invalid in 64-bit
mode.)
PUSH DS 1E Push the DS selector onto the stack. (Invalid in 64-bit
mode.)
PUSH ES 06 Push the ES selector onto the stack. (Invalid in 64-bit
mode.)
PUSH FS OF AO Push the FS selector onto the stack.
PUSH GS OF A8 Push the GS selector onto the stack.
Related Instructions
POP
rFLAGS Affected
None
Exceptions
Virtual
Exception Real| 8086 | Protected Cause of Exception
Invalid opcode, X PUSH CS, PUSH DS, PUSH ES, or PUSH SS was executed
#UD in 64-bit mode.
A memory address exceeded the stack segment limit or was
Stack, #3S X X X non-canonical.
i X X X A memory address exceeded a data segment limit or was non-
General protection, canonical.
#GP
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.

288

General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
PUSHA Push All GPRs onto Stack
PUSHAD

Pushes the contents of the eAX, eCX, eDX, eBX, eSP (original value), eBP, eSI, and eDI general-
purpose registers onto the stack in that order. This instruction decrements the stack pointer by 16 or 32
depending on operand size.

Using the PUSHA or PUSHAD instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description
Push the contents of the AX, CX, DX, BX, original SP,
PUSHA 60 BP, SI, and DI registers onto the stack.

(Invalid in 64-bit mode.)

Push the contents of the EAX, ECX, EDX, EBX, original
PUSHAD 60 ESP, EBP, ESI, and EDI registers onto the stack.
(Invalid in 64-bit mode.)

Related Instructions

POPA, POPAD
rFLAGS Affected
None
Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
;I;L\J/S“d opcode, X This instruction was executed in 64-bit mode.
Stack, #SS X X X A memory address exceeded the stack segment limit.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
General-Purpose 289

Instruction Reference

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021
PUSHF Push rFLAGS onto Stack
PUSHFD
PUSHFQ

Decrements the rSP register and copies the rFLAGS register (except for the VM and RF flags) onto the
stack. The instruction clears the VM and RF flags in the rFLAGS image before putting it on the stack.

The instruction pushes 2, 4, or 8 bytes, depending on the operand size.

In 64-bit mode, this instruction defaults to a 64-bit operand size and there is no prefix available to
encode a 32-bit operand size.

In virtual-8086 mode, if system software has set the IOPL field to a value less than 3, a general-
protection exception occurs if application software attempts to execute PUSHFx or POPFx while
VME is not enabled or the operand size is not 16-bit.

Mnemonic Opcode Description
PUSHF 9C Push the FLAGS word onto the stack.
Push the EFLAGS doubleword onto stack. (No prefix
PUSHFD 9C encoding this in 64-bit mode.)
PUSHFQ 9C Push the RFLAGS quadword onto stack.
Action

// See “Pseudocode Definition” on page 57.

PUSHF START:
IF (REAL MODE)
PUSHF REAL
ELSIF (PROTECTED MODE)
PUSHF PROTECTED
ELSE // (VIRTUAL MODE)
PUSHF VIRTUAL

PUSHF_REAL:
PUSH.v old RFLAGS // Pushed with RF and VM cleared.
EXIT

PUSHF_PROTECTED:
PUSH.v old RFLAGS // Pushed with RF cleared.
EXIT

PUSHF_VIRTUAL:
IF (RFLAGS.IOPL==3)
{
PUSH.v old RFLAGS // Pushed with RF,VM cleared.
EXIT

290 General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021

ELSIF ((CR4.VME==1)

{

AMDG64 Technology

&& (OPERAND SIZE==16))

PUSH.v old RFLAGS // Pushed with VIF in the IF position.
// Pushed with IOPL=3.

EXIT
}
ELSE // ((RFLAGS.IOPL<3) && ((CR4.VME==0) || (OPERAND SIZE!=16)))
EXCEPTION [#GP(0)]
Related Instructions
POPF, POPFD, POPFQ
rFLAGS Affected
None
Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #5S X X X non-canonical.
General protection, X The 1/O privilege level was less than 3 and either VME was not
#GP enabled or the operand size was not 16-bit.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.

General-Purpose
Instruction Reference

291

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

RCL Rotate Through Carry Left

Rotates the bits of a register or memory location (first operand) to the left (more significant bit
positions) and through the carry flag by the number of bit positions in an unsigned immediate value or
the CL register (second operand). The bits rotated through the carry flag are rotated back in at the right
end (Isb) of the first operand location.

The processor masks the upper three bits of the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63.

For 1-bit rotates, the instruction sets the OF flag to the logical xor of the CF bit (after the rotate) and
the most significant bit of the result. When the rotate count is greater than 1, the OF flag is undefined.
When the rotate count is 0, no flags are affected.

Mnemonic Opcode Description

Rotate the 9 bits consisting of the carry flag and an 8-bit
RCL reg/mem8,1 Do /2 register or memory location left 1 bit.

Rotate the 9 bits consisting of the carry flag and an 8-bit
RCL reg/mem8, CL D2 /2 register or memory location left the number of bits
specified in the CL register.

Rotate the 9 bits consisting of the carry flag and an 8-bit
RCL reg/mem8, imm8 CO0/2ib register or memory location left the number of bits
specified by an 8-bit immediate value.

Rotate the 17 bits consisting of the carry flag and a 16-
RCL reg/mem16, 1 D1/2 bit register or memory location left 1 bit.

Rotate the 17 bits consisting of the carry flag and a 16-
RCL reg/mem16, CL D3 /2 bit register or memory location left the number of bits
specified in the CL register.

Rotate the 17 bits consisting of the carry flag and a 16-
RCL reg/mem16, imm8 C1/2ib bit register or memory location left the number of bits
specified by an 8-bit immediate value.

Rotate the 33 bits consisting of the carry flag and a 32-
RCL reg/mem32, 1 D172 bit register or memory location left 1 bit.

Rotate 33 bits consisting of the carry flag and a 32-bit
RCL reg/mem32, CL D3 /2 register or memory location left the number of bits
specified in the CL register.

Rotate the 33 bits consisting of the carry flag and a 32-
RCL reg/mem32, imm8 C1/2ib bit register or memory location left the number of bits
specified by an 8-bit immediate value.

Rotate the 65 bits consisting of the carry flag and a 64-
RCL reg/mem64, 1 D1/2 bit register or memory location left 1 bit.

292 General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
Mnemonic Opcode Description
Rotate the 65 bits consisting of the carry flag and a 64-
RCL reg/mem64, CL D3 /2 bit register or memory location left the number of bits
specified in the CL register.
Rotates the 65 bits consisting of the carry flag and a 64-
RCL reg/memé64, imm8 C1/2ib bit register or memory location left the number of bits
specified by an 8-bit immediate value.
Related Instructions
RCR, ROL, ROR
rFLAGS Affected
ID |VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M
21 120 |19 | 18 | 17 | 16 | 14 13:12 1 | 10 9 8 7 6 4 2 0

Undefined flags are U.

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. Aflag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #55 X X non-canonical.
X X A memory address exceeded a data segment limit or was non-
; canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.

General-Purpose

Instruction Reference

293

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

RCR Rotate Through Carry Right

Rotates the bits of a register or memory location (first operand) to the right (toward the less significant
bit positions) and through the carry flag by the number of bit positions in an unsigned immediate value
or the CL register (second operand). The bits rotated through the carry flag are rotated back in at the
left end (msb) of the first operand location.

The processor masks the upper three bits in the count operand, thus restricting the count to a number
between 0 and 31. When the destination is 64 bits wide, the processor masks the upper two bits of the
count, providing a count in the range of 0 to 63.

For 1-bit rotates, the instruction sets the OF flag to the logical xor of the two most significant bits of
the result. When the rotate count is greater than 1, the OF flag is undefined. When the rotate count is 0,
no flags are affected.

Mnemonic Opcode Description

Rotate the 9 bits consisting of the carry flag and an 8-bit
RCR reg/mems, 1 Do/3 register or memory location right 1 bit.

Rotate the 9 bits consisting of the carry flag and an 8-bit
RCR reg/mem8,CL D2 /3 register or memory location right the number of bits
specified in the CL register.

Rotate the 9 bits consisting of the carry flag and an 8-bit
RCR reg/mem8,imm8 CO0/3ib register or memory location right the number of bits
specified by an 8-bit immediate value.

Rotate the 17 bits consisting of the carry flag and a 16-
RCR reg/mem16,1 D1/3 bit register or memory location right 1 bit.

Rotate the17 bits consisting of the carry flag and a 16-bit
RCR reg/mem16,CL D3 /3 register or memory location right the number of bits
specified in the CL register.

Rotate the 17 bits consisting of the carry flag and a 16-
RCR reg/mem16, imm8 C1/3ib bit register or memory location right the number of bits
specified by an 8-bit immediate value.

Rotate the 33 bits consisting of the carry flag and a 32-
RCR reg/mem32,1 D1/3 bit register or memory location right 1 bit.

Rotate 33 bits consisting of the carry flag and a 32-bit
RCR reg/mem32,CL D3 /3 register or memory location right the number of bits
specified in the CL register.

Rotate the 33 bits consisting of the carry flag and a 32-
RCR reg/mem32, imm8 C1/3ib bit register or memory location right the number of bits
specified by an 8-bit immediate value.

Rotate the 65 bits consisting of the carry flag and a 64-
RCR reg/mem64,1 D1/3 bit register or memory location right 1 bit.

294 General-Purpose
Instruction Reference

AMDZU

24594—Rev. 3.32—March 2021 AMDG64 Technology
Mnemonic Opcode Description
Rotate 65 bits consisting of the carry flag and a 64-bit
RCR reg/mem64,CL D3 /3 register or memory location right the number of bits
specified in the CL register.
Rotate the 65 bits consisting of the carry flag and a 64-
RCR reg/mem64, imm8 C1/3ib bit register or memory location right the number of bits
specified by an 8-bit immediate value.
Related Instructions
RCL, ROR, ROL
rFLAGS Affected
ID |VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M
21 120 |19 | 18 | 17 | 16 | 14 13:12 11 [10 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. Aflag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception

A memory address exceeded the stack segment limit or was

Stack, #55 X X non-canonical.
A memory address exceeded a data segment limit or was non-

X X A
; canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.

General-Purpose

Instruction Reference

295

AMDZU

AMDG64 Technology 24594—Rev. 3.32—March 2021
RDFSBASE Read FS.base
RDGSBASE Read GS.base

Copies the base field of the FS or GS segment descriptor to the specified register. When supported and
enabled, these instructions can be executed at any processor privilege level. The RDFSBASE and
RDGSBASE instructions are only defined in 64-bit mode.

System software must set the FSGSBASE bit (bit 16) of CR4 to enable the RDFSBASE and
RDGSBASE instructions.

Support for this instruction is indicated by CPUID Fn0000 0007 EBX xO[FSGSBASE] = 1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Opcode Description

Copy the lower 32 bits of FS.base to the specified

RDFSBASE reg32 F3 OF AE /0 general-purpose register.

Copy the entire 64-bit contents of FS.base to the

RDFSBASE reg64 F30F AE/0 specified general-purpose register.

Copy the lower 32 bits of GS.base to the specified
RDGSBASE reg32 F3 OF AE /1 general-purpose register.
RDGSBASE reg64 F3 OF AE /1 Copy the entire 64-bit contents of GS.base to the

specified general-purpose register.

Related Instructions

WRFSBASE, WRGSBASE

rFLAGS Affected

None.

Exceptions

Compat-
Exception Legacy| ibility | 64-bit Cause of Exception
X X Instruction is not valid in compatibility or legacy

modes.

#UD Instruction not supported as indicated by CPUID

X | Fn0000_0007_EBX xO[FSGSBASE] =0 or, if

supported, not enabled in CR4.

296 General-Purpose

Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

RDPID Read Processor ID

RDPID reads the value of TSC_AUX MSR used by the RDTSCP instruction into the specified
destination register. Normal operand size prefixes do not apply and the update is either 32 bit or 64 bit
based on the current mode.

The RDPID instruction can be used to access the TSC AUX value at CPL > 0 in cases where the
operating system has disabled unprivileged execution of the RDTSCP instruction.

The content of the TSC_AUX MSR, including how and even whether it actually indicates a processor
ID, is a matter of operating system convention.

The RDPID instruction is supported if the feature flag CPUID Fn0000 0007 X0 ECX[22]=1.

Mnemonic Opcode Description
RDPID F3 OF C7/7 Read TSC_AUX

Related Instructions
RDTSCP

rFLAGS Affected

rNone

ID |VIP|VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 1 110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
Invalid opcode, Instruction not supported by CPUID Fn0000_0007_ECX[22] =
#UD X | X X o
General-Purpose 297

Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

RDPRU Read Processor Register

RDPRU instruction is used to give access to some processor registers that are typically only accessible
when the privilege level is zero. ECX is used as the implicit register to specify which register to read.
RDPRU places the specified register’s value into EDX:EAX.

The RDPRU instruction normally can be executed at any privilege level. When CR4.TSD=1, RDPRU
can only be used when the privilege level is zero. When the CPL>0 with CR4.TSD=1, the RDPRU
instruction will generate a #UD fault.

The RDPRU instruction is supported if the feature flag CPUID Fn8000 0008 EBX[4]=1. The 16-bit
field in CPUID Fn8000 0008-EDX][31:16] returns the largest ECX value that returns a valid register.
Any unsupported ECX values return zero. Registers currently supported by ECX values are:

e ECX Value 0 = Register MPERF
e ECX Value 1 = Register APERF

Mnemonic Opcode Description
RDPRU OF 01 FD Copy register specified by ECX into EDX:EAX
rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF

0 0 0 0 0 M
21 120 | 19 | 18 | 17 | 16 | 14 13:12 1110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. Aflag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 [Protected Cause of Exception
. Instruction not supported by
invalid opcode, X | x X | CPUID Fn8000_0008_EBX[RDPRU] = 0 or CPL>0 and
CR4.TSD=1.
298 General-Purpose

Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

RDRAND Read Random

Loads the destination register with a hardware-generated random value.
The size of the returned value in bits is determined by the size of the destination register.

Hardware modifies the CF flag to indicate whether the value returned in the destination register is
valid. If CF = 1, the value is valid. If CF = 0, the value is invalid. Software must test the state of the CF
flag prior to using the value returned in the destination register to determine if the value is valid. If the
returned value is invalid, software must execute the instruction again. Software should implement a
retry limit to ensure forward progress of code.

The execution of RDRAND clears the OF, SF, ZF, AF, and PF flags.

Support for the RDRAND instruction is optional. On processors that support the instruction, CPUID
Fn0000 0001 ECX[RDRAND]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 160. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 591.

Mnemonic Opcode Description
RDRAND reg16 OF C7 /6 Load the destination register with a 16-bit random
number.
RDRAND reg32 OF C7 /6 rI;oad the destination register with a 32-bit random
umber.
RDRAND reg64 OF C7 /6 hgﬁ]db’g:e destination register with a 64-bit random

Related Instructions
RDSEED

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
0 0 0 0 0 M
21 1 20 | 19 | 18 | 17 | 16 | 14 13:12 1110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 [Protected Cause of Exception
Invalid opcode, X X X Instruction not supported as indicated by
#UD CPUID Fn0000_0001_ECX[RDRAND] = 0.
General-Purpose 299

Instruction Reference

AMDZ\
AMDG64 Technology 24594—Rev. 3.32—March 2021

RDSEED Read Random Seed

Loads the destination register with a hardware-generated random “seed” value.
The size of the returned value in bits is determined by the size of the destination register.

Hardware modifies the CF flag to indicate whether the value returned in the destination register is
valid. If CF = 1, the value is valid. If CF = 0, the value is invalid and will be returned as zero. Software
must test the state of the CF flag prior to using the value returned in the destination register to
determine if the value is valid. If the returned value is invalid, software must execute the instruction
again. Software should implement a retry limit to ensure forward progress of code.

The execution of RDSEED clears the OF, SF, ZF, AF, and PF flags.

Mnemonic Opcode Description

RDSEED reg16 OF C7 17 Read 16-bit random seed
RDSEED reg32 OF C7 /7 Read 32-bit random seed
RDSEED reg64 OF C7 /7 Read 64-bit random seed

Related Instructions
RDRAND

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
0 0 0 0 0 M
21 120 | 19 | 18 | 17 | 16 | 14 13:12 1 110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank.Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
; Instruction not supported as indicated by CPUID
Invalid opcode, #UD | X | X X | Fn0000_0007 EBX_ xO[RDSEED] = 0
300 General-Purpose

Instruction Reference

AMDZ\
24594—Rev. 3.32—March 2021 AMDG64 Technology

RET (Near) Near Return from Called Procedure

Returns from a procedure previously entered by a CALL near instruction. This form of the RET
instruction returns to a calling procedure within the current code segment.

This instruction pops the rIP from the stack, with the size of the pop determined by the operand size.
The new rIP is then zero-extended to 64 bits. The RET instruction can accept an immediate value
operand that it adds to the rSP after it pops the target rIP. This action skips over any parameters
previously passed back to the subroutine that are no longer needed.

In 64-bit mode, the operand size defaults to 64 bits (eight bytes) without the need for a REX prefix. No
prefix is available to encode a 32-bit operand size in 64-bit mode.

See RET (Far) for information on far returns—returns to procedures located outside of the current
code segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

Mnemonic Opcode Description
RET C3 Near return to the calling procedure.
RET imm16 C2 iw Near return to the calling procedure then pop the

specified number of bytes from the stack.

Action
RETN_START:
IF (OPCODE == retn immlo)
temp IMM = 16 bit immediate from the instruction, zero-extended to 64 bits
ELSE // (OPCODE == retn)

temp IMM = 0

IF (sta